Skip to main content

The Role of Host Cell Death in Salmonella Infections

  • Chapter
Role of Apoptosis in Infection

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 289))

Abstract

Salmonella enterica is an important enteric pathogen of humans and a variety of domestic and wild animals. Infection is initiated in the intestinal tract, and severe disease produces widespread destruction of the intestinal mucosa. Salmonella strains can also disseminate from the intestine and produce serious, sometimes fatal infections with considerable cytopathology in a number of systemic organs. A combination of bacterial genetic and cell biology studies have shown that Salmonella uses specific virulence mechanisms to induce host cell death during infection. Salmonella produces one set of virulence proteins to promote invasion of the intestine and a different set to mediate systemic disease. Significantly, each set of virulence factors mediates a distinct mechanism of host cell death. The Salmonella pathogenicity island-1 (SPI-1) locus encodes a type III protein secretion system (TTSS) that delivers effector proteins required for intestinal invasion and the production of enteritis. The SPI-1 effector SipB activates caspase-1 in macrophages, releasing IL-1β and IL-18 and inducing rapid cell death by a mechanism that has features of both apoptosis and necrosis. Caspase-1 is required for Salmonella to infect Peyer’s patches and disseminate to systemic tissues in mice. Progressive Salmonella infection in mice requires the SPI-2 TTSS and associated effector proteins as well as the SpvB cytotoxin. Apoptosis of macrophages in the liver is found during systemic infection. In cell culture, Salmonella strains induce delayed apoptosis dependent on SPI-2 function in macrophages from a variety of sources. This delayed apoptosis also requires activation of TLR4 on macrophages by the bacterial LPS. Downstream activation of kinase pathways leads to balanced pro- and antiapoptotic regulatory factors in the cell. NF-κB and p38 mitogen-activated protein kinase (MAPK) are particularly important for the induction of antiapoptotic factors, whereas the kinase PKR is required for bacterial-induced apoptosis. The Salmonella SPI-2 TTSS is essential for altering the balance in favor of apoptosis during intracellular infection, but the effectors involved remain poorly characterized. The SpvB cytotoxin has been shown to play a role in apoptosis in human macrophages by depolymerizing the actin cytoskeleton. A model for the role of bacteria-induced host cell death in Salmonella pathogenesis is proposed. In the intestine, the Salmonella SPI-1 TTSS and SipB mediate macrophage death by caspase-1 activation, which also releases IL-1β and IL-18, promoting inflammation and subsequent phagocytosis by incoming macrophages and leading to dissemination to systemic tissues. Intracellular secretion of virulence effector proteins by the SPI-2 TTSS facilitates growth of Salmonella in these macrophages and the delayed onset of apoptosis in extraintestinal tissues. These infected, apoptotic cells are targeted for engulfment by incoming macrophages, thus perpetuating the cycle of cell-to-cell spread that is the hallmark of systemic Salmonella infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assuncao Guimaraes C, Linden R (2004) Programmed cell deaths. Apoptosis and alternative deathstyles. Eur J Biochem 271:1638–1650

    Article  PubMed  Google Scholar 

  • Brennan MA, Cookson BT (2000) Salmonella induces macrophage death by caspase1-dependent necrosis. Mol Microbiol 38:31–40

    Article  PubMed  Google Scholar 

  • Browne SH, Lesnick ML, Guiney DG (2002) Genetic requirements for salmonella-induced cytopathology in human monocyte-derived macrophages. Infect Immun 70:7126–7135

    Article  PubMed  Google Scholar 

  • Collier-Hyams LS et al. (2002) Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-kappa B pathway. J Immunol 169:2846–2850

    PubMed  Google Scholar 

  • Eckmann L, Kagnoff MF, Fierer J (1993) Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect Immun 61:4569–4574

    PubMed  Google Scholar 

  • Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RA, Henson PM (2000) A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:85–90

    Article  PubMed  Google Scholar 

  • Fields PI, Swanson RV, Haidaris CG, Heffron F (1986) Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA 83:5189–5193

    PubMed  Google Scholar 

  • Fierer J, Hatlen L, Lin JP, Estrella D, Mihalko P, Yau-Young A (1990) Successful treatment using gentamicin liposomes of Salmonella dublin infections in mice. Antimicrob Agents Chemother 34:343–348

    PubMed  Google Scholar 

  • Finlay BB, Gumbiner B, Falkow S (1988) Penetration of Salmonella through a polarized Madin-Darby canine kidney epithelial cell monolayer. J Cell Biol 107:221–230

    Article  PubMed  Google Scholar 

  • Forsberg M, Druid P, Zheng L, Stendahl O, Sarndahl E (2003) Activation of Rac2 and Cdc42 on Fc and complement receptor ligation in human neutrophils. J Leukoc Biol 74:611–619

    Article  PubMed  Google Scholar 

  • Galan JE (2001) Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17:53–86

    Article  PubMed  Google Scholar 

  • Haraga A, Miller SI (2003) A Salmonella enterica serovar typhimurium translocated leucine-rich repeat effector protein inhibits NF-kappa B-dependent gene expression. Infect Immun 71:4052–4058

    Article  PubMed  Google Scholar 

  • Hernandez LD, Pypaert M, Flavell RA, Galan JE (2003) A Salmonella protein causes macrophage cell death by inducing autophagy. J Cell Biol 163:1123–1131

    Article  PubMed  Google Scholar 

  • Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A (1999) The Salmonella invasion SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA 96:2396–2401

    Article  PubMed  Google Scholar 

  • Holden DW (2002) Trafficking of the Salmonella vacuole in macrophages. Traffic 3:161–169

    Article  PubMed  Google Scholar 

  • Hsu LC et al. (2004) The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 428:341–345

    Article  PubMed  Google Scholar 

  • Jarvelainen HA, Galmiche A, Zychlinsky A (2003) Caspase-1 activation by Salmonella. Trends Cell Biol 13:204–209

    Article  PubMed  Google Scholar 

  • Jesenberger V, Procyk KJ, Yuan J, Reipert S, Baccarini M (2000) Salmonella-induced caspase-2 activation in macrophages: a novel mechanism in pathogen-mediated apoptosis. J Exp Med 192:1035–1046

    Article  PubMed  Google Scholar 

  • Jones BD, Falkow S (1996) Salmonellosis: host immune responses and bacterial virulence determinants. Annu Rev Immunol 14:533–561

    Article  PubMed  Google Scholar 

  • Jones BD, Ghori N, Falkow S (1994) Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med 180:15–23

    Article  PubMed  Google Scholar 

  • Kim JM, Eckmann L, Savidge TC, Lowe DC, Witthoft T, Kagnoff MF (1998) Apoptosis of human intestinal epithelial cells after bacterial invasion. J Clin Invest 102:1815–1823

    PubMed  Google Scholar 

  • Knodler LA, Finlay BB (2001) Salmonella and apoptosis: to live or let die? Microbes Infect 3:1321–1326

    Article  PubMed  Google Scholar 

  • Knodler LA, Steele-Mortimer O (2003) Taking possession: biogenesis of the Salmonella-containing vacuole. Traffic 4:587–599

    Article  PubMed  Google Scholar 

  • Lesnick ML, Reiner NE, Fierer J, Guiney DG (2001) The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cyto-skeleton of eukaryotic cells. Mol Microbiol 39:1464–1470

    Article  PubMed  Google Scholar 

  • Libby SJ et al. (1997) The spy genes on the Salmonella dublin virulence plasmid are required for severe enteritis and systemic infection in the natural host. Infect Immun 65:1786–1792

    PubMed  Google Scholar 

  • Libby SJ et al. (2002) Characterization of the spy locus in Salmonella enterica serovar Arizona. Infect Immun 70:3290–3294

    Article  PubMed  Google Scholar 

  • Libby SJ, Lesnick M, Hasegawa P, Weidenhammer E, Guiney DG (2000) The Salmonella virulence plasmid spy genes are required for cytopathology in human monocyte-derived macrophages. Cell Microbiol 2:49–58

    Article  PubMed  Google Scholar 

  • Lindgren SW, Stojiljkovic I, Heffron F (1996) Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc Natl Acad Sci USA 93:4197–4201

    Article  PubMed  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146:3–15

    PubMed  Google Scholar 

  • Marsden VS et al. (2002) Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419:634–637

    Article  PubMed  Google Scholar 

  • Monack DM, Detweiler CS, Falkow S (2001a) Salmonella pathogenicity island 2-dependent macrophage death is mediated in part by the host cysteine protease caspase-1. Cell Microbiol 3:825–837

    Article  PubMed  Google Scholar 

  • Monack DM, Hersh D, Ghori N, Bouley D, Zychlinsky A, Falkow S (2000) Salmonella exploits caspase-1 to colonize Peyer’s patches in a murine typhoid model. J Exp Med 192:249–258

    Article  PubMed  Google Scholar 

  • Monack DM, Navarre WW, Falkow S (2001b) Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation. Microbes Infect 3:1201–1212

    Article  PubMed  Google Scholar 

  • Mrsny RJ et al. (2004) Identification of hepoxilin A3 in inflammatory events: a required role in neutrophil migration across intestinal epithelia. Proc Natl Acad Sci USA 101:7421–7426

    Article  PubMed  Google Scholar 

  • Murli S, Watson RO, Galan JE (2001) Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell Microbiol 3:795–810

    Article  PubMed  Google Scholar 

  • Ohl ME, Miller SI (2001) Salmonella: a model for bacterial pathogenesis. Annu Rev Med 52:259–274

    Article  PubMed  Google Scholar 

  • Paesold G, Guiney DG, Eckmann L, Kagnoff MF (2002) Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells. Cell Microbiol 4:771–781

    Article  PubMed  Google Scholar 

  • Pang T, Bhutta ZA, Finlay BB, Altwegg M (1995) Typhoid fever and other salmonellosis: a continuing challenge. Trends Microbiol 3:253–255

    Article  PubMed  Google Scholar 

  • Park JM, Greten FR, Li ZW, Karin M (2002) Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297:2048–2051

    Article  PubMed  Google Scholar 

  • Resta-Lenert S, Barrett KE (2002) Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: role of iNOS and COX-2. Gastroenterology 122:1070–1087

    Article  PubMed  Google Scholar 

  • Richter-Dahlfors A, Buchan AM, Finlay BB (1997) Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 186:569–580

    Article  PubMed  Google Scholar 

  • Roudier C, Krause M, Fierer J, Guiney DG (1990) Correlation between the presence of sequences homologous to the vir region of Salmonella dublin plasmid pSDL2 and the virulence of twenty-two Salmonella serotypes in mice. Infect Immun 58:1180–1185

    PubMed  Google Scholar 

  • Santos RL, Tsolis RM, Baumler AJ, Smith R, 3rd, Adams LG (2001a) Salmonella enterica serovar typhimurium induces cell death in bovine monocyte-derived macrophages by early sipB-dependent and delayed sipB-independent mechanisms. Infect Immun 69:2293–2301

    Article  PubMed  Google Scholar 

  • Santos RL, Tsolis RM, Zhang S, Ficht TA, Baumler AJ, Adams LG (2001b) Salmonella-induced cell death is not required for enteritis in calves. Infect Immun 69:4610–4617

    Article  PubMed  Google Scholar 

  • Santos RL, Zhang S, Tsolis RM, Kingsley RA, Adams LG, Baumler AJ (2001c) Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect 3:1335–1344

    Article  PubMed  Google Scholar 

  • Schwan WR, Huang XZ, Hu L, Kopecko DJ (2000) Differential bacterial survival, replication, and apoptosis-inducing ability of Salmonella serovars within human and murine macrophages. Infect Immun 68:1005–1013

    Article  PubMed  Google Scholar 

  • Smith PD et al. (2001) Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS-and IgA-mediated activities. J Immunol 167:2651–2656

    PubMed  Google Scholar 

  • Tezcan-Merdol D, Nyman T, Lindberg U, Haag F, Koch-Nolte F, Rhen M (2001) Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB. Mol Microbiol 39:606–619

    Article  PubMed  Google Scholar 

  • van der Velden AW, Lindgren SW, Worley MJ, Heffron F (2000) Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype typhimurium. Infect Immun 68:5702–5709

    Article  PubMed  Google Scholar 

  • van der Velden AW, Velasquez M, Starnbach MN (2003) Salmonella rapidly kill dendritic cells via a caspase-1-dependent mechanism. J Immunol 171:6742–6749

    PubMed  Google Scholar 

  • Vazquez-Torres A et al. (1999) Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature 401:804–808

    Article  PubMed  Google Scholar 

  • Waterman SR, Holden DW (2003) Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 5:501–511

    Article  PubMed  Google Scholar 

  • Weinrauch Y, Zychlinsky A (1999) The induction of apoptosis by bacterial pathogens. Annu Rev Microbiol 53:155–187

    Article  PubMed  Google Scholar 

  • Zhang S et al. (2002) The Salmonella enterica serotype typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect Immun 70:3843–3855

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Guiney, D.G. (2005). The Role of Host Cell Death in Salmonella Infections. In: Griffin, D.E. (eds) Role of Apoptosis in Infection. Current Topics in Microbiology and Immunology, vol 289. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27320-4_6

Download citation

Publish with us

Policies and ethics