Skip to main content

Novel Advancements in the Management and Diagnosis of Acute Respiratory Failure

  • Chapter
Evidence-Based Management of Patients with Respiratory Failure

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT))

  • 334 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zapol WM, Snider MT, Hill JD, et al (1979) Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA 242:2193–2196

    Article  PubMed  CAS  Google Scholar 

  2. Abel SJ, Finney SJ, Brett SJ, Keogh BF, Morgan CJ, Evans TW (1998) Reduced mortality in association with the acute respiratory distress syndrome (ARDS). Thorax 53:292–294

    Article  PubMed  CAS  Google Scholar 

  3. Milberg JA, Davis DR, Steinberg KP, Hudson LD (1995) Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA 273:306–309

    Article  PubMed  CAS  Google Scholar 

  4. Heyland DK, Cook DJ, Dodek PM (2002) Prevention of ventilator-associated pneumonia: Current practice in Canadian intensive care units. J Crit Care 17:161–167

    Article  PubMed  Google Scholar 

  5. Geerts W, Cook D, Selby R, Etchells E (2002) Venous thromboembolism and its prevention in critical care. J Crit Care 17:95–104

    Article  PubMed  Google Scholar 

  6. Cook D, Laporta D, Skrobik Y, et al (2001) Prevention of venous thromboembolism in critically ill surgery patients: a cross-sectional study. J Crit Care 16:161–166

    Article  PubMed  CAS  Google Scholar 

  7. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  8. Ayres SM, Grace WJ (1969) Inappropriate ventilation and hypoxemia as causes of cardiac arrhythmias. The control of arrhythmias without antiarrhythmic drugs. Am J Med 46:495–505

    Article  PubMed  CAS  Google Scholar 

  9. Argov Z, Mastaglia FL (1979) Drug therapy: Disorders of neuromuscular transmission caused by drugs. N Engl J Med 301:409–413

    PubMed  CAS  Google Scholar 

  10. Le Bourdelles G, Viires N, Boczkowski J, Seta N, Pavlovic D, Aubier M (1994) Effects of mechanical ventilation on diaphragmatic contractile properties in rats. Am J Respir Crit Care Med 149:1539–1544

    PubMed  Google Scholar 

  11. Petrof BJ, Legare M, Goldberg P, Milic-Emili J, Gottfried SB (1990) Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis 141:281–289

    PubMed  CAS  Google Scholar 

  12. Sinderby C, Spahija J, Beck J (2001) Changes in respiratory effort sensation over time are linked to the frequency content of diaphragm electrical activity. Am J Respir Crit Care Med 163:905–910

    PubMed  CAS  Google Scholar 

  13. Sinderby C, Navalesi P, Beck J, et al (1999) Neural control of mechanical ventilation in respiratory failure. Nat Med 5:1433–1436

    Article  PubMed  CAS  Google Scholar 

  14. Appendini L, Patessio A, Zanaboni S, et al (1994) Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 149:1069–1076

    PubMed  CAS  Google Scholar 

  15. Macklem PT (1984). Hyperinflation. Am Rev Respir Dis 129:1–2

    PubMed  CAS  Google Scholar 

  16. Similowski T, Yan S, Gauthier AP, Macklem PT, Bellemare F (1991) Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med 325:917–923

    Article  PubMed  CAS  Google Scholar 

  17. Ranieri VM, Giuliani R, Cinnella G, et al (1993) Physiologic effects of positive end-expiratory pressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation. Am Rev Respir Dis 147:5–13

    PubMed  CAS  Google Scholar 

  18. Sinderby CA, Beck JC, Lindstrom LH, Grassino AE (1997) Enhancement of signal quality in esophageal recordings of diaphragm EMG. J Appl Physiol 82:1370–1377

    PubMed  CAS  Google Scholar 

  19. Beck J, Sinderby C, Lindstrom L, Grassino A (1998) Crural diaphragm activation during dynamic contractions at various inspiratory flow rates. J Appl Physiol 85:451–458

    PubMed  CAS  Google Scholar 

  20. Sinderby CA, Beck JC, Lindstrom LH, Grassino AE (1997) Enhancement of signal quality in esophageal recordings of diaphragm EMG. J Appl Physiol 82:1370–1377

    PubMed  CAS  Google Scholar 

  21. Beck J, Sinderby C, Lindstrom L, Grassino A (1996) Influence of bipolar esophageal electrode positioning on measurements of human crural diaphragm electromyogram. J Appl Physiol 81:1434–1449

    PubMed  CAS  Google Scholar 

  22. Beck J, Sinderby C, Lindstrom L, Grassino A (1998) Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol 85:1123–1134

    PubMed  CAS  Google Scholar 

  23. Beck J, Sinderby C, Lindstrom L, Grassino A (1998) Effects of lung volume on diaphragm EMG signal strength during voluntary contractions. J Appl Physiol 85:1123–1134

    PubMed  CAS  Google Scholar 

  24. Beck J, Gottfried SB, Navalesi P, et al (2001) Electrical activity of the diaphragm during pressure support ventilation in acute respiratory failure. Am J Respir Crit Care Med 164:419–424

    PubMed  CAS  Google Scholar 

  25. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    PubMed  CAS  Google Scholar 

  26. Slutsky AS (1999) Lung injury caused by mechanical ventilation. Chest 116(Suppl):9S–15S

    PubMed  CAS  Google Scholar 

  27. Tremblay LN, Slutsky AS (1998) Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 110:482–488

    PubMed  CAS  Google Scholar 

  28. Matamis D, Lemaire F, Harf A, Brun-Buisson C, Ansquer JC, Atlan G (1984) Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86:58–66

    PubMed  CAS  Google Scholar 

  29. Maggiore SM, Jonson B, Richard JC, Jaber S, Lemaire F, Brochard L (2001) Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury: comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med 164:795–801

    PubMed  CAS  Google Scholar 

  30. Rimensberger PC, Cox PN, Frndova H, Bryan AC (1999) The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med 27:1946–1952

    PubMed  CAS  Google Scholar 

  31. Ranieri VM, Grasso S, Mascia L, et al (1997) Effects of proportional assist ventilation on inspiratory muscle effort in patients with chronic obstructive pulmonary disease and acute respiratory failure. Anesthesiology 86:79–91

    PubMed  CAS  Google Scholar 

  32. Brown BH, Barber DC, Seagar AD (1985) Applied potential tomography: possible clinical applications. Clin Phys Physiol Meas 6:109–121

    Article  PubMed  CAS  Google Scholar 

  33. Brown BH, Barber DC (1987) Electrical impedance tomography; the construction and application to physiological measurement of electrical impedance images. Med Prog Technol 13:69–75

    PubMed  CAS  Google Scholar 

  34. Blott BH, Daniell GJ, Meeson S (1998) Electrical impedance tomography with compensation for electrode positioning variations. Phys Med Biol 43:1731–1739

    PubMed  CAS  Google Scholar 

  35. Blott BH, Daniell GJ, Meeson S (1998) Nonlinear reconstruction constrained by image properties in electrical impedance tomography. Phys Med Biol 43:1215–1224

    PubMed  CAS  Google Scholar 

  36. Kleinermann F, Avis NJ, Judah SK, Barber DC (1996) Three-dimensional image reconstruction for electrical impedance tomography. Physiol Meas 17(Suppl 4A):A77–A83

    PubMed  Google Scholar 

  37. Kunst PW, Vonk NA, Straver B, et al (1998) Influences of lung parenchyma density and thoracic fluid on ventilatory EIT measurements. Physiol Meas 19:27–34

    PubMed  CAS  Google Scholar 

  38. Vonk NA, Kunst PW, Janse A, et al (1998) Pulmonary perfusion measured by means of electrical impedance tomography. Physiol Meas 19:263–273

    Google Scholar 

  39. Kunst PW, Vonk NA, Hoekstra OS, Postmus PE, de Vries PM (1998) Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning. Physiol Meas 19:481–490

    PubMed  CAS  Google Scholar 

  40. Kunst PW, Vonk NA, Raaijmakers E, et al (1999) Electrical impedance tomography in the assessment of extravascular lung water in noncardiogenic acute respiratory failure. Chest 116:1695–1702

    Article  PubMed  CAS  Google Scholar 

  41. Frerichs I, Dudykevych T, Hinz J, Bodenstein M, Hahn G, Hellige G (2001) Gravity effects on regional lung ventilation determined by functional EIT during parabolic flights. J Appl Physiol 91:39–50

    PubMed  CAS  Google Scholar 

  42. Frerichs I, Hahn G, Hellige G (1999) Thoracic electrical impedance tomographic measurements during volume controlled ventilation-effects of tidal volume and positive end-expiratory pressure. IEEE Trans Med Imaging 18:764–773

    Article  PubMed  CAS  Google Scholar 

  43. Frerichs I, Hahn G, Schroder T, Hellige G (1998) Electrical impedance tomography in monitoring experimental lung injury. Intensive Care Med 24:829–836

    Article  PubMed  CAS  Google Scholar 

  44. Frerichs I, Hahn G, Golisch W, Kurpitz M, Burchardi H, Hellige G (1998) Monitoring perioperative changes in distribution of pulmonary ventilation by functional electrical impedance tomography. Acta Anaesthesiol Scand 42:721–726

    Article  PubMed  CAS  Google Scholar 

  45. Kunst PW, Vazquez dA, Bohm SH, et al (2000) Monitoring of recruitment and derecruitment by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:3891–3895

    PubMed  CAS  Google Scholar 

  46. Kunst PW, de Vries PM, Postmus PE, Bakker J (1999) Evaluation of electrical impedance tomography in the measurement of PEEP-induced changes in lung volume. Chest 115:1102–1106

    Article  PubMed  CAS  Google Scholar 

  47. Kunst PW, Bohm SH, Vazquez dA, et al (2000) Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit Care Med 28:178–183

    PubMed  CAS  Google Scholar 

  48. Eyuboglu BM, Brown BH, Barber DC (1988) Problems of cardiac output determination from electrical impedance tomography scans. Clin Phys Physiol Meas 9(Suppl A):71–77

    PubMed  Google Scholar 

  49. Eyuboglu BM, Brown BH, Barber DC, Seagar AD (1987) Localisation of cardiac related impedance changes in the thorax. Clin Phys Physiol Meas 8(Suppl A):167–173

    PubMed  Google Scholar 

  50. Leikauf GD, McDowell SA, Wesselkamper SC, et al (2002) Acute lung injury: functional genomics and genetic susceptibility. Chest 121(3 Suppl):70S–75S

    PubMed  CAS  Google Scholar 

  51. McDowell SA, Mallakin A, Bachurski CJ, et al (2002) The role of the receptor tyrosine kinase Ron in nickel-induced acute lung injury. Am J Respir Cell Mol Biol 26:99–104

    PubMed  CAS  Google Scholar 

  52. Messer G, Spengler U, Jung MC, et al (1991) Polymorphic structure of the tumor necrosis factor (TNF) locus: an NcoI polymorphism in the first intron of the human TNF-beta gene correlates with a variant amino acid in position 26 and a reduced level of TNF-beta production. J Exp Med 173:209–219

    Article  PubMed  CAS  Google Scholar 

  53. Pociot F, Briant L, Jongeneel CV, et al (1993) Association of tumor necrosis factor (TNF) and class II major histocompatibility complex alleles with the secretion of TNF-alpha and TNF-beta by human mononuclear cells: a possible link to insulin-dependent diabetes mellitus. Eur J Immunol 23:224–231

    PubMed  CAS  Google Scholar 

  54. Bouma G, Crusius JB, Oudkerk PM, et al (1996) Secretion of tumour necrosis factor alpha and lymphotoxin alpha in relation to polymorphisms in the TNF genes and HLA-DR alleles. Relevance for inflammatory bowel disease. Scand J Immunol 43:456–463

    Article  PubMed  CAS  Google Scholar 

  55. Stuber F, Petersen M, Bokelmann F, Schade U (1996) A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis. Crit Care Med 24:381–384

    PubMed  CAS  Google Scholar 

  56. Mira JP, Cariou A, Grall F, et al (1999) Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA 282:561–568

    Article  PubMed  CAS  Google Scholar 

  57. Stuber F, Udalova IA, Book M, et al (1995)-308 tumor necrosis factor (TNF) polymorphism is not associated with survival in severe sepsis and is unrelated to lipopolysaccharide inducibility of the human TNF promoter. J Inflamm 46:42–50

    PubMed  Google Scholar 

  58. Waterer GW, Quasney MW, Cantor RM, Wunderink RG (2001) Septic shock and respiratory failure in community-acquired pneumonia have different TNF polymorphism associations. Am J Respir Crit Care Med 163:1599–1604

    PubMed  CAS  Google Scholar 

  59. Majetschak M, Flohe S, Obertacke U, et al (1999) Relation of a TNF gene polymorphism to severe sepsis in trauma patients. Ann Surg 230:207–214

    Article  PubMed  CAS  Google Scholar 

  60. Marshall RP, Webb S, Bellingan GJ, et al (2002) Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med 166:646–650

    Article  PubMed  Google Scholar 

  61. Baudin B (2002) New aspects on angiotensin-converting enzyme: from gene to disease. Clin Chem Lab Med 40:256–265

    Article  PubMed  CAS  Google Scholar 

  62. Vincent JL (2002) New management strategies in ARDS. Immunomodulation. Crit Care Clin 18:69–78

    Article  PubMed  CAS  Google Scholar 

  63. dos Santos CC, Chant C, Slutsky AS (2002) Pharmacotherapy of acute respiratory distress syndrome. Expert Opin Pharmacother 3:875–888

    Article  PubMed  Google Scholar 

  64. Ranieri VM, Suter PM, Tortorella C, et al (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61

    Article  PubMed  CAS  Google Scholar 

  65. Ranieri VM, Giunta F, Suter PM, Slutsky AS (2000) Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome. JAMA 284:43–44

    Article  PubMed  CAS  Google Scholar 

  66. Narimanbekov IO, Rozycki HJ (1995) Effect of IL-1 blockade on inflammatory manifestations of acute ventilator-induced lung injury in a rabbit model. Exp Lung Res 21:239–254

    PubMed  CAS  Google Scholar 

  67. Ulich TR, Yin SM, Guo KZ, del Castillo J, Eisenberg SP, Thompson RC (1991) The intratracheal administration of endotoxin and cytokines. III. The interleukin-1 (IL-1) receptor antagonist inhibits endotoxin-and IL-1-induced acute inflammation. Am J Pathol 138:521–524

    PubMed  CAS  Google Scholar 

  68. Leff JA, Bodman ME, Cho OJ, et al (1994) Post-insult treatment with interleukin-1 receptor antagonist decreases oxidative lung injury in rats given intratracheal interleukin-1. Am J Respir Crit Care Med 150:109–112

    PubMed  CAS  Google Scholar 

  69. Imai Y, Kawano T, Iwamoto S, Nakagawa S, Takata M, Miyasaka K (1999) Intratracheal anti-tumor necrosis factor-alpha antibody attenuates ventilator-induced lung injury in rabbits. J Appl Physiol 87:510–515

    PubMed  CAS  Google Scholar 

  70. Shvedova AA, Kramarik JA, Keohavong P, Chumakov KM, Karol MH (1994) Use of anti-TNF-alpha antiserum to investigate toxic alveolitis arising from cotton dust exposure. Exp Lung Res 20:297–315

    Article  PubMed  CAS  Google Scholar 

  71. Weiss YG, Maloyan A, Tazelaar J, Raj N, Deutschman CS (2002) Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome. J Clin Invest 110:801–806

    Article  PubMed  CAS  Google Scholar 

  72. Asea A, Kabingu E, Stevenson MA, Calderwood SK (2000) HSP70 peptidembearing and peptide-negative preparations act as chaperokines. Cell Stress Chaperones 5:425–431

    Article  PubMed  CAS  Google Scholar 

  73. Asea A, Kraeft SK, Kurt-Jones EA, et al (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442

    PubMed  CAS  Google Scholar 

  74. Xie Y, Cahill CM, Asea A, Auron PE, Calderwood SK (1999) Heat shock proteins and regulation of cytokine expression. Infect Dis Obstet Gynecol 7:26–30

    Article  PubMed  CAS  Google Scholar 

  75. Asea A, Rehli M, Kabingu E, et al (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034

    Article  PubMed  CAS  Google Scholar 

  76. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112

    PubMed  CAS  Google Scholar 

  77. Frerichs I, Schiffmann H, Hahn G, Hellige G (2001) Non-invasive radiation-free monitoring of regional lung ventilation in critically ill infants. Intensive Care Med 27:1385–139410.

    PubMed  CAS  Google Scholar 

  78. Frerichs I, Hinz J, Herrmann P, et al (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam CT. J Appl Physiol 93:660–666

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

dos Santos, C.C., Slutsky, A.S. (2005). Novel Advancements in the Management and Diagnosis of Acute Respiratory Failure. In: Esteban, A., Cook, D.J., Anzueto, A. (eds) Evidence-Based Management of Patients with Respiratory Failure. Update in Intensive Care Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27314-X_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-27314-X_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20947-8

  • Online ISBN: 978-3-540-27314-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics