Skip to main content

Selection of RNase-Resistant RNAs

  • Chapter
RNA Towards Medicine

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 173))

Abstract

All RNA types are susceptible to ribonuclease (RNase) digestion, which might be a serious problem for several in vitro and in vivo applications. RNase resistance can be reached through chemical modifications or the selection of stable secondary structures via SELEX (systematic evolution of ligands by exponential enrichment). This chapter focuses on the selection of natural RNase-resistant RNAs, enriched by a selection process in the presence of RNase T1. Results of these investigations led to the identification of a particular structural motif, the tetraloop. Further applications could be the advised use of such motifs in order to reach higher stability of RNA molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Greiner-Stöffele T, Forster HH, Hofmann HJ, Hahn U (2001) RNase-stable RNA: conformational parameters of the nucleic acid backbone for binding to RNase T1. Biol Chem 382:1007–1017

    PubMed  Google Scholar 

  • Jucker FM, Pardi A (1995) GNRA tetraloops make a U-turn. Rna 1:219–222

    CAS  PubMed  Google Scholar 

  • Klussmann S, Nolte A, Bald R, Erdmann VA, Furste JP (1996) Mirror-image RNA that binds D-adenosine. Nat Biotechnol 14:1112–1115

    CAS  PubMed  Google Scholar 

  • Kubik MF, Bell C, Fitzwater T, Watson SR, Tasset DM (1997) Isolation and characterization of 2′-fluoro-, 2′-amino-, and 2′-fluoro-/amino-modified RNA ligands to human IFN-gamma that inhibit receptor binding. J Immunol 159:259–267

    CAS  PubMed  Google Scholar 

  • Major F, Gautheret D, Cedergren R (1993) Reproducing the three-dimensional structure of a tRNA molecule from structural constraints. Proc Natl Acad Sci U S A 90:9408–9412

    CAS  PubMed  Google Scholar 

  • Nolte A, Klussmann S, Bald R, Erdmann VA, Furste JP (1996) Mirror-design of L-oligonucleotide ligands binding to L-arginine. Nat Biotechnol 14:1116–1119

    Article  CAS  PubMed  Google Scholar 

  • Pagratis NC, Bell C, Chang YF, Jennings S, Fitzwater T, Jellinek D, Dang C (1997) Potent 2′-amino-, and 2′-fluoro-2′-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat Biotechnol 15:68–73

    Article  CAS  PubMed  Google Scholar 

  • Saran A, Pullman B, Perahia D (1973) Molecular orbital calculations on the conformation of nucleic acids and their constituents. VI. Conformation about the exocyclic C(4′)-C(5′) bond in alpha-nucleosides. Biochim Biophys Acta 299:497–499

    CAS  PubMed  Google Scholar 

  • Schürer H, Stembera K, Knoll D, Mayer G, Blind M, Forster HH, Famulok M, Welzel P, Hahn U (2001) Aptamers that bind to the antibiotic moenomycin A. Bioorg Med Chem 9:2557–2563

    PubMed  Google Scholar 

  • Steyaert J (1997) A decade of protein engineering on ribonuclease T1—atomic dissection of the enzyme-substrate interactions. Eur J Biochem 247:1–11

    Article  CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    CAS  PubMed  Google Scholar 

  • Walter AE, Turner DH, Kim J, Lyttle MH, Muller P, Mathews DH, Zuker M (1994) Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. Proc Natl Acad Sci U S A 91:9218–9222

    CAS  PubMed  Google Scholar 

  • Woese CR, Winker S, Gutell RR (1990) Architecture of ribosomal RNA: constraints on the sequence of “tetra-loops”. Proc Natl Acad Sci U S A 87:8467–8471

    CAS  PubMed  Google Scholar 

  • Zhang G, Simon AE (2003) A multifunctional turnip crinkle virus replication enhancer revealed by in vivo functional SELEX. J Mol Biol 326:35–48

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (1989) On finding all suboptimal foldings of an RNA molecule. Science 244:48–52

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kainz, S., Czaja, R., Greiner-Stöffele, T., Hahn, U. (2006). Selection of RNase-Resistant RNAs. In: Erdmann, V., Barciszewski, J., Brosius, J. (eds) RNA Towards Medicine. Handbook of Experimental Pharmacology, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27262-3_23

Download citation

Publish with us

Policies and ethics