Skip to main content

RNA Targeting Using Peptide Nucleic Acid

  • Chapter
RNA Towards Medicine

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 173))

Abstract

The efforts towards peptide nucleic acid (PNA) drug discovery using cellular RNAs as molecular targets is briefly reviewed, with special emphasis on recent developments. Special attention is given to cellular delivery in vivo bioavailability and the possibilities of using PNA oligomers to (re)direct alternative splicing of pre-messenger (m)RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cartegni L, Krainer AR (2003) Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat Struct Biol 10:120–125

    Article  CAS  PubMed  Google Scholar 

  • Chaubey B, Tripathi S, Ganguly S, Harris D, Casale RA, Pandey VN (2005) A PNA-transportan conjugate targeted to the TAR region of the HIV-1 genome exhibits both antiviral and virucidal properties. Virology 331:418–428

    Article  CAS  PubMed  Google Scholar 

  • Doyle DF, Braasch DA, Simmons CG, Janowski BA, Corey DR (2001) Inhibition of gene expression inside cells by peptide nucleic acids: effect of mRNA target sequence, mis-matched bases, and PNA length. Biochemistry 40:53–64

    CAS  PubMed  Google Scholar 

  • Dryselius R, Aswasti SK, Rajarao GK, Nielsen PE, Good L (2003) The translation start codon region is sensitive to antisense PNA inhibition in Escherichia coli. Oligonucleotides 13:427–433

    Article  CAS  PubMed  Google Scholar 

  • Filipovska A, Eccles MR, Smith RAJ, Murphy MP (2004) Delivery of antisense peptide nucleic acids (PNAs) to the cytosol by disulphide conjugation to a lipophilic cation. FEBS Lett 556:180–186

    Article  CAS  PubMed  Google Scholar 

  • Folini M, Berg K, Millo E, Villa R, Prasmickaite L, Daidone MG, Benatti U, Zaffaroni N (2003) Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase. Cancer Res 63:3490–3494

    CAS  PubMed  Google Scholar 

  • Gait MJ (2003) Peptide-mediated cellular delivery of antisense oligonucleotides and their analogues. Cell Mol Life Sci 60:844–853

    CAS  PubMed  Google Scholar 

  • Ganesh KN, Nielsen PE (2000) Peptide nucleic acids: analogs and derivatives. Curr Org Chem 4:931–943

    Article  CAS  Google Scholar 

  • Good L, Awasthi SK, Dryselius R, Larsson O, Nielsen PE (2001) Bactericidal antisense effects of peptide-PNA conjugates. Nat Biotechnol 19:360–364

    Article  CAS  PubMed  Google Scholar 

  • Hamilton SE, Simmons CG, Kathiriya IS, Corey DR (1999) Cellular delivery of peptide nucleic acids and inhibition of human telomerase. Chem Biol 6:343–351

    Article  CAS  PubMed  Google Scholar 

  • Hamzavi R, Dolle F, Tavitian B, Dahl O, Nielsen PE (2003) Modulation of the pharmacokinetic properties of PNA: preparation of galactosyl, mannosyl, fucosyl, N-acetylgalactosaminyl, and N-acetylglucosaminyl derivatives of aminoethylglycine peptide nucleic acid monomers and their incorporation into PNA Oligomers. Bioconjug Chem 14:941–954

    Article  CAS  PubMed  Google Scholar 

  • Jensen KK, Ørum H, Nielsen PE, Nordén B (1997) Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique. Biochemistry 36:5072–5077

    Article  CAS  PubMed  Google Scholar 

  • Kaihatsu K, Huffman KE, Corey DR (2004) Intracellular uptake and inhibition of gene expression by PNAs and PNA-peptide conjugates. Biochemistry 43:14340–14347

    Article  CAS  PubMed  Google Scholar 

  • Kaushik N, Basu A, Pandey VN (2002) Inhibition of HIV-1 replication by anti-transactivation responsive polyamide nucleotide analog. Antiviral Res 56:13–27

    Article  CAS  PubMed  Google Scholar 

  • Kilk K, Elmquist A, Saar K, Pooga M, Land T, Bartfai T, Soomets U, Langel Ãœ (2004) Targeting of antisense PNA oligomers to human galanin receptor type 1 mRNA. Neuropeptides 38:316–324

    Article  CAS  PubMed  Google Scholar 

  • Knudsen H, Nielsen PE (1996) Antisense properties of duplex-and triplex-forming PNAs. Nucleic Acids Res 24:494–500

    Article  CAS  PubMed  Google Scholar 

  • Kole R, Vacek M, Williams T (2004) Modification of alternative splicing by antisense therapeutics. Oligonucleotides 14:65–74

    Article  CAS  PubMed  Google Scholar 

  • Koppelhus U, Awasthi SK, Zachar V, Holst HU, Ebbesen P, Nielsen PE (2002) Cell-dependent differential cellular uptake of PNA, peptides, and PNA-peptide conjugates. Antisense Nucleic Acid Drug Dev 12:51–63

    Article  CAS  PubMed  Google Scholar 

  • Kristensen E (2002) In vitro and in vivo studies on pharmacokinetics and metabolism of PNA constructs in rodents. In: Nielsen PE (ed) Peptide nucleic acids: methods and protocols. Humana Press, Totowa, pp 259–269

    Google Scholar 

  • Liu Y, Braasch DA, Nulf CJ, Corey DR (2004) Efficient and isoform-selective inhibition of cellular gene expression by peptide nucleic acids. Biochemistry 43:1921–1927

    CAS  PubMed  Google Scholar 

  • Ljungstrøm T, Knudsen H, Nielsen PE (1999) Cellular uptake of adamantyl conjugated peptide nucleic acids. Bioconjug Chem 10:965–972

    PubMed  Google Scholar 

  • Lundberg P, Langel Ãœ (2003) A brief introductionto cell-penetrating peptides. J Mol Recognit 16:227–233

    Article  CAS  PubMed  Google Scholar 

  • Mier W, Eritja R, Mohammed A, Haberkorn U, Eisenhut M (2003) Peptide-PNA conjugates: targeted transport of antisense therapeutics into tumors. Angew Chem Int Ed Engl 42:1968–1971

    Article  CAS  PubMed  Google Scholar 

  • Nekhotiaeva N, Awasthi SK, Nielsen PE, Good L (2004) Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol Ther 10:652–659

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500

    CAS  PubMed  Google Scholar 

  • Nulf CJ, Corey D (2004) Intracellular inhibition of hepatitis C virus(HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). Nucleic Acids Res 32:3792–3798

    CAS  PubMed  Google Scholar 

  • Robaczewska M, Narayan R, Seigneres B, Schorr O, Thermet A, Podhajska AJ, Trepo C, Zoulim F, Nielsen PE, Cova L (2005) Sequence-specific inhibition of duck hepatitis B virus reverse transcription by peptide nucleic acids (PNA). J Hepatol 42:180–187

    Article  CAS  PubMed  Google Scholar 

  • Sazani P, Gemignani F, Kang S-H, Maier MA, Manoharan M, Persmark M, Bortner D, Kole R (2002) Systemically delivered antisense oligomers upregulate gene expression in mouse tissues. Nat Biotechnol 20:1228–1233

    Article  CAS  PubMed  Google Scholar 

  • Sénamaud-Beaufort C, Leforestier E, Saison-Behmoaras TE (2003) Short pyrimidine stretches containing mixed base PNAs are versatile tools to induce translation elongation arrest and truncated protein synthesis. Oligonucleotides 13:465–478

    PubMed  Google Scholar 

  • Shammas MA, Liu XH, Gavory G, Raney KD, Balasubramanian S, Reis RJS (2004) Targeting the single-strand G-richoverhang of telomeres with PNA inhibits cell growth and induces apoptosis of human immortal cells. Exp Cell Res 295:204–214

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi T, Nielsen PE (2004) Down-regulation of MDM 2 and activation of p53 in human cancer cells by antisense 9-aminoacridine-PNA (peptide nucleic acid) conjugates. Nucleic Acids Res 32:4893–4902

    Article  CAS  PubMed  Google Scholar 

  • Siwkowski AM, Malik L, Esau CC, Maier MA, Wancewicz EV, Albertshofer K, Monia BP, Bennett CF, Eldrup AB (2004) Identification and functional validation of PNAs that inhibit murine CD40 expression by redirection of splicing. Nucleic Acids Res 32:2695–2706

    Article  CAS  PubMed  Google Scholar 

  • van Rossenberg SMW, Sliedregt-Bol KM, Prince P, Van Berkel TJC, Van Boom JH, Van der Marel GA, Biessen EAL (2003) A targeted peptide Nucleic acid to down-regulate mouse microsomal triglyceride transfer protein expression in hepatocytes. Bioconjug Chem 14:1077–1082

    PubMed  Google Scholar 

  • Wittung P, Kajanus J, Edwards K, Nielsen P, Nordén B, Malmström BG (1995) Phospholipid membrane permeability of peptide nucleic acid. FEBS Lett 365:27–29

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nielsen, E. (2006). RNA Targeting Using Peptide Nucleic Acid. In: Erdmann, V., Barciszewski, J., Brosius, J. (eds) RNA Towards Medicine. Handbook of Experimental Pharmacology, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27262-3_20

Download citation

Publish with us

Policies and ethics