Skip to main content

RNA Aptamers as Potential Pharmaceuticals Against Infections with African Trypanosomes

  • Chapter
RNA Towards Medicine

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 173))

Abstract

Protozoal pathogens cause symptomatic as well as asymptomatic infections. They have a worldwide impact, which in part is reflected in the long-standing search for antiprotozoal chemotherapy. Unfortunately, effective treatments for the different diseases are by and large not available. This is especially true for African trypanosomiasis, also known as sleeping sickness. The disease is an increasing problem in many parts of sub-Saharan Africa, which is due to the lack of new therapeutics and the increasing resistance against traditional drugs such as melarsoprol, berenil and isometamidium. Considerable progress has been made over the past 10 years in the development of nucleic acid-based drug molecules using a variety of different technologies. One approach is a combinatorial technology that involves an iterative Darwinian-type in vitro evolution process, which has been termed SELEX for “systematic evolution of ligands by exponential enrichment”. The procedure is a highly efficient method of identifying rare ligands from combinatorial nucleic acid libraries of very high complexity. It allows the selection of nucleic acid molecules with desired functions, and it has been instrumental in the identification of a number of synthetic DNA and RNA molecules, so-called aptamers that recognize ligands of different chemical origin. Aptamers typically bind their target with high affinity and high specificity and have successfully been converted into pharmaceutically active compounds. Here we summarize the recent examples of the SELEX technique within the context of identifying high-affinity RNA ligands against the surface of the protozoan parasite Trypanosoma brucei, which is the causative agent of sleeping sickness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal S, Zhang R (1997) Pharmacokinetics of oligonucleotides. Ciba Found Symp 209:60–75

    CAS  PubMed  Google Scholar 

  • Andreopoulos S (2003) Developing drugs for parasitic diseases. Science 300:430–431

    Article  PubMed  Google Scholar 

  • Blum, ML, Down JA, Gurnett AM, Carrington M, Turner MJ, Wiley DC (1993) A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature 362:603–609

    Article  CAS  PubMed  Google Scholar 

  • Bonora GM, Ivanova E, Zarytova V, Burcovich B, Veronese FM (1997) Synthesis and characterization of high-molecular mass polyethylene glycol-conjugated oligonucleotides. Bioconjug Chem 8:793–797

    Article  CAS  PubMed  Google Scholar 

  • Brody EN, Gold L (2000) Aptamers as therapeutic and diagnostic agents. J Biotechnol 74:5–13

    CAS  PubMed  Google Scholar 

  • Burgstaller P, Girod A, Blind M (2002) Aptamers as tools for target prioritization and lead identification. Drug Discov Today 7:1221–1228

    Article  CAS  PubMed  Google Scholar 

  • Capron A, Capron M, Riveau G (2002) Vaccine development against schistosomiasis from concepts to clinical trials. Br Med Bull 62:139–148

    PubMed  Google Scholar 

  • Caruthers MH (1985) Gene synthesis machines: DNA chemistry and its uses. Science 230:281–285

    CAS  PubMed  Google Scholar 

  • Cecchelli R, Dehouck B, Descamp L, Fenart L, Buée-Scherrer V, Duhem C, Torpier G, Dehouck MP (2000) In vitro models of the blood-brain barrier and their use in drug development. In: The blood-brain barrier and drug delivery to the CNS. Eds. Begley DJ, Bradbury MW, Kreuter J. pp 65–75

    Google Scholar 

  • Conn GL, Draper DE (1998) RNA structure. Curr Opin Struct Biol 8:278–285

    Article  CAS  PubMed  Google Scholar 

  • Cross GAM (1975) Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71:393–417

    CAS  PubMed  Google Scholar 

  • Dias JC, Silveira AC, Schofield CJ (2002) The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz 97:603–612

    Article  CAS  PubMed  Google Scholar 

  • Donelson JE (2003) Antigenic variation and the African trypanosome genome. Acta Trop 85:391–404

    CAS  PubMed  Google Scholar 

  • Eaton BE, Pieken WA (1995) Ribonucleosides and RNA. Annu Rev Biochem 64:837–863

    Article  CAS  PubMed  Google Scholar 

  • Eccleston ME, Kuiper M, Gilchrist FM, Slater NK (2000) pH-responsive pseudo-peptides for cell membrane disruption. J Control Release 69:297–307

    Article  CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Enanga B, Burchmore RJS, Stewart ML, Barrett MP (2002) Sleeping sickness and the brain. Cell Mol Life Sci 59:845–858

    CAS  PubMed  Google Scholar 

  • Fairlamb AH (2003) Chemotherapy of human African trypanosomiasis: current and future prospects. Trends Parasitol 19:488–494

    Article  CAS  PubMed  Google Scholar 

  • Fine SL, Martin DF, Kirkpatrick P (2005) Pegaptanib sodium. Nat Rev Drug Discov 4:187–8

    Article  CAS  PubMed  Google Scholar 

  • Franke H, Galla HJ, Beuckmann CT (1999). An improved low-permeability in vitro model of the blood-brain barrier: transport studies on retinoids, sucrose, haloperidol, caffeine and mannitol. Brain Res 818:65–71

    Article  CAS  PubMed  Google Scholar 

  • Franke H, Galla HJ, Beuckmann CT (2000). Primary cultures of brain microvessel endothelial cells: a valid and flexible model to study drug transport through the blood-brain barrier in vitro. Brain Res Protocols 5:248–256

    Article  CAS  Google Scholar 

  • Freymann D, Down J, Carrington M, Roditi I, Turner M, Wiley D. (1990) 2.9 Å resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei. J Mol Biol 216:141–460

    CAS  PubMed  Google Scholar 

  • Fitzwater T, Polisky B (1996). A SELEX primer. Methods Enzymol 267:275–301

    CAS  PubMed  Google Scholar 

  • Gaillard PJ, Voorwinden LH, Nielsen JL, Ivanov A, Atsumi R, Engman H, Ringbom C, de Boer AG, Breimer DD (2001). Establishment and functional characterization of an in vitro model of the blood-brain barrier, comprising a co-culture of brain capillary endothelial cells and astrocytes. Eur J Pharm Sci 12:215–222

    CAS  PubMed  Google Scholar 

  • Gold L (1995) Oligonucleotides as research, diagnostic, and therapeutic agents. J Biol Chem 270:13581–13584

    CAS  PubMed  Google Scholar 

  • Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351:2805–2816

    Article  CAS  PubMed  Google Scholar 

  • Green LS, Bell C, Janjic N (2001) Aptamers as reagents for high-throughput screening. Biotechniques 30:1094–1110

    CAS  PubMed  Google Scholar 

  • Healy JM, Lewis SD, Kurz M, Boomer RM, Thompson KM, Wilson C, McCauley TG (2004) Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res 21:2234–2246

    Article  CAS  PubMed  Google Scholar 

  • Hesselberth J, Robertson MP, Jhaveri S, Ellington AD (2000) In vitro selection of nucleic acids for diagnostic applications. J Biotechnol 74:15–25

    CAS  PubMed  Google Scholar 

  • Homann M, Göringer HU (1999) Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucl Acids Res 27:2006–2014

    Article  CAS  PubMed  Google Scholar 

  • Homann M, Göringer HU (2001) Uptake and intracellular transport of RNA aptamers in African trypanosomes suggest therapeutic “piggy-back” approach. Bioorg Med Chem 9:2571–2580

    CAS  PubMed  Google Scholar 

  • Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650

    CAS  PubMed  Google Scholar 

  • Johnson JG, Cross GA (1979) Selective cleavage of variant surface glycoproteins from Trypanosoma brucei. Biochem 178:689–697

    CAS  Google Scholar 

  • Kaiser A, Gottwald A, Wiersch C, Maier W, Seitz HM (2002) The necessity to develop drugs against parasitic diseases. Pharmazie 57:723–728

    CAS  PubMed  Google Scholar 

  • Khaw M, Panosian CB (1995) Human antiprotozoal therapy: past, present, and future. Clin Microbiol Rev 8:427–439

    CAS  PubMed  Google Scholar 

  • Kioy D, Jannin J, Mattock N (2004) Human African trypanosomiasis. Nat Rev Microbiol 2:186–187

    Article  CAS  PubMed  Google Scholar 

  • Lam KS, Renil M (2002) From combinatorial chemistry to chemical microarray. Curr Opin Chem Biol 6:353–358

    Article  CAS  PubMed  Google Scholar 

  • Lebruska LL, Maher LJ 3rd (1999) Selection and characterization of an RNA decoy for transcription factor NF-kappa B. Biochemistry 38:3168–3174

    Article  CAS  PubMed  Google Scholar 

  • Londsdale-Eccles JD, Grab DJ (2002) Trypanosome hydrolases and the blood-brain barrier. Trends Parasit 18:17–19

    Google Scholar 

  • Lorger M, Engstler M, Homann M, Göringer HU (2003) Targeting the variable surface of African trypanosomes using VSG-specific, serum-stable RNA aptamers. Eukaryotic Cell 2:84–94

    Article  CAS  PubMed  Google Scholar 

  • Mann MJ, Dzau VJ (2000) Therapeutic applications of transcription factor decoy oligonucleotides. J Clin Invest 106:1071–1075

    CAS  PubMed  Google Scholar 

  • Michiels F, Matthyssens G, Kronenberger P, Pays E, Dero B, Van Assel S, Darville M, Cravador A, Steinert M, Hamers R (1983) Gene activation and re-expression of a Trypanosoma brucei variant surface glycoprotein. EMBO J 2:1185–1192

    CAS  PubMed  Google Scholar 

  • Morris KN, Jensen KB, Julin CM, Weil M, Gold L (1998) High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci USA 95:2902–2907

    CAS  PubMed  Google Scholar 

  • Mulenga C, Mhlanga JD, Kristensson K, Robertson B (2001) Trypanosoma brucei brucei crosses the blood-brain barrier while tight junction proteins are preserved in a rat chronic disease model. Neuropathol Appl Neurobiol. 27:77–85

    Article  CAS  PubMed  Google Scholar 

  • Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56:187–188

    Article  Google Scholar 

  • Pecoul B, Chirac P, Trouiller P, Pinel J (1999) Access to essential drugs in poor countries: a lost battle? JAMA 281:361–367

    Article  CAS  PubMed  Google Scholar 

  • Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F (1991) Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253:314–317

    CAS  PubMed  Google Scholar 

  • Pieken W (1997) Efficient process technologies for the preparation of oligonucleotides. Ciba Found Symp 209:218–222

    CAS  PubMed  Google Scholar 

  • Reich MR, Govindaraj R (1998) Dilemmas in drug development for tropical diseases. Experiences with praziquantel. Health Policy 44:1–18

    Article  CAS  PubMed  Google Scholar 

  • Rice-Ficht AC, Chen KK, Donelson JE (1982) Point mutations during generation of expression-linked extra copy of trypanosome surface glycoprotein gene. Nature 298:676–679

    Article  CAS  PubMed  Google Scholar 

  • Rudenko G, Cross M, Borst P (1998) Changing the end: antigenic variation orchestrated at the telomeres of African trypanosomes. Trends Microbiol 6:113–116

    Article  CAS  PubMed  Google Scholar 

  • Smith DH, Pepin J, Stich AHR (1998) Human African trypanosomiasis: an emerging public health crisis. Brit Med Bull 54:341–355

    CAS  PubMed  Google Scholar 

  • Stephenson I, Wiselka M (2000) Drug treatment of tropical parasitic infections: recent achievements and developments. Drugs 60:985–995

    Article  CAS  PubMed  Google Scholar 

  • Tonge SR, Tighe BJ (2001) Responsive hydrophobically associating polymers: a review of structure and properties. Adv Drug Deliv Rev 53:109–122

    Article  CAS  PubMed  Google Scholar 

  • Trouiller P, Torreele E, Olliaro P, White N, Foster S, Wirth D, Pecoul B (2001) Drugs for neglected diseases: a failure of the market and a public health failure? Trop Med Int Health 6:945–951

    Article  CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    CAS  PubMed  Google Scholar 

  • Ulrich H, Alves MJ, Colli W (2001) RNA and DNA aptamers as potential tools to prevent cell adhesion in disease. Braz J Med Biol Res 34:295–300

    Article  CAS  PubMed  Google Scholar 

  • Urakawa T, Eshita Y, Majiwa PA (1997) The primary structure of Trypanosoma (Nannomonas) congolense variant surface glycoproteins. Exp Parasit 85:215–224

    CAS  PubMed  Google Scholar 

  • Van Gompel A, Vervoort T (1997) Chemotherapy of leishmaniasis and trypanosomiasis. Curr Opin Infect Dis 10:469–474

    Google Scholar 

  • Watson SR, Chang YF, O’Connell D, Weigand L, Ringquist S, Parma DH (2000) Anti-Lselectin aptamers: binding characteristics, pharmacokinetic parameters, and activity against an intravascular target in vivo. Antisense Nucleic Acid Drug Dev 10:63–75

    CAS  PubMed  Google Scholar 

  • White RR, Sullenger BA, Rusconi CP (2000) Developing aptamers into therapeutics. J Clin Invest 106:929–934

    CAS  PubMed  Google Scholar 

  • Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Göringer, H., Homann, M., Zacharias, M., Adler, A. (2006). RNA Aptamers as Potential Pharmaceuticals Against Infections with African Trypanosomes. In: Erdmann, V., Barciszewski, J., Brosius, J. (eds) RNA Towards Medicine. Handbook of Experimental Pharmacology, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27262-3_19

Download citation

Publish with us

Policies and ethics