Skip to main content

Strategies to Identify Potential Therapeutic Target Sites in RNA

  • Chapter
RNA Towards Medicine

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 173))

Abstract

Antisense agents are powerful tools to inhibit gene expression in a sequencespecific manner. They are used for functional genomics, as diagnostic tools and for therapeutic purposes. Three classes of antisense agents can be distinguished by their mode of action: single-stranded antisense oligodeoxynucleotides; catalytic active RNA/DNA such as ribozymes, DNA- or locked nucleic acid (LNA)zymes; and small interfering RNA molecules known as siRNA. The selection of target sites in highly structured RNA molecules is crucial for their successful application. This is a difficult task, since RNA is assembled into nucleoprotein complexes and forms stable secondary structures in vivo, rendering most of the molecule inaccessible to intermolecular base pairing with complementary nucleic acids. In this review, we discuss several selection strategies to identify potential target sites in RNA molecules. In particular, we focus on combinatorial library approaches that allow high throughput screening of sequences for the design of antisense agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allawi HT, Dong F, Ip HS, Neri BP, Lyamichev VI (2001) Mapping of RNA accessible sites by extension of random oligonucleotide libraries with reverse transcriptase. RNA 7:314–327

    Article  CAS  PubMed  Google Scholar 

  • Barroso-DelJesus A, Berzal-Herranz A (2001) Selection of targets and the most efficient hairpin ribozymes for inactivation of mRNAs using a self-cleaving RNA library. EMBO Rep 2:1112–1118

    Article  CAS  PubMed  Google Scholar 

  • Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M, Kerkhoven RM, Madiredjo M, Nijkamp W, Weigelt B, Agami R, Ge W, Cavet G, Linsley PS, Beijersbergen RL, Bernards R (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437

    Article  CAS  PubMed  Google Scholar 

  • Birikh KR, Berlin YA, Soreq H, Eckstein F (1997a) Probing accessible sites for ribozymes on human acetylcholinesterase RNA. RNA 3:429–437

    CAS  PubMed  Google Scholar 

  • Birikh KR, Heaton PA, Eckstein F (1997b) The structure, function and application of the hammerhead ribozyme. Eur J Biochem 245:1–16

    Article  CAS  PubMed  Google Scholar 

  • Brunel C, Ehresmann B, Ehresmann C, McKeown M (2001) Selection of genomic target RNAs by iterative screening. Bioorg Med Chem 9:2533–2541

    CAS  PubMed  Google Scholar 

  • Cairns MJ, Hopkins TM, Witherington C, Wang L, Sun LQ (1999) Target site selection for an RNA-cleaving catalytic DNA. Nat Biotechnol 17:480–486

    CAS  PubMed  Google Scholar 

  • Chalk AM, Wahlestedt C, Sonnhammer EL (2004) Improved and automated prediction of effective siRNA. Biochem Biophys Res Commun 319:264–274

    Article  CAS  PubMed  Google Scholar 

  • Chen TZ, Lin SB, Wu JC, Choo KB, Au LC (1996) A method for screening antisense oligodeoxyribonucleotides effective for mRNA translation-arrest. J Biochem (Tokyo) 119:252–255

    CAS  PubMed  Google Scholar 

  • Crooke ST (2004) Progress in antisense technology. Annu Rev Med 55:61–95

    Article  CAS  PubMed  Google Scholar 

  • Dausse E, Cazenave C, Rayner B, Toulme JJ (2005) In vitro selection procedures for identifying DNA and RNA aptamers targeted to nucleic acids and proteins. Methods Mol Biol 288:391–410

    CAS  PubMed  Google Scholar 

  • Donis-Keller H (1979) Site specific enzymatic cleavage of RNA. Nucleic Acids Res 7:179–192

    CAS  PubMed  Google Scholar 

  • Dunn SJ, Park SW, Sharma V, Raghu G, Simone JM, Tavassoli R, Young LM, Ortega MA, Pan CH, Alegre GJ, Roninson IB, Lipkina G, Dayn A, Holzmayer TA (1999) Isolation of efficient antivirals: genetic suppressor elements against HIV-1. Gene Ther 6:130–137

    Article  CAS  PubMed  Google Scholar 

  • Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  • Gee JE, Robbins I, van der Laan AC, van Boom JH, Colombier C, Leng M, Raible AM, Nelson JS, Lebleu B (1998) Assessment of high-affinity hybridization, RNase H cleavage, and covalent linkage in translation arrest by antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 8:103–111

    CAS  PubMed  Google Scholar 

  • Good L (2003a) Diverse antisensemechanisms and applications. Cell Mol Life Sci 60:823–824

    CAS  PubMed  Google Scholar 

  • Good L (2003b) Translation repression by antisense sequences. Cell Mol Life Sci 60:854–861

    CAS  PubMed  Google Scholar 

  • Gudkov AV, Zelnick CR, Kazarov AR, Thimmapaya R, Suttle DP, Beck WT, Roninson IB (1993) Isolation of genetic suppressor elements, inducing resistance to topoisomerase II-interactive cytotoxic drugs, from human topoisomerase II cDNA. Proc Natl Acad Sci U S A 90:3231–3235

    CAS  PubMed  Google Scholar 

  • Gyllensten UB, Erlich HA (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci U S A 85:7652–7656

    CAS  PubMed  Google Scholar 

  • Ho SP, Britton DH, Stone BA, Behrens DL, Leffet LM, Hobbs FW, Miller JA, Trainor GL (1996) Potent antisense oligonucleotides to the human multidrug resistance-1 mRNA are rationally selected by mapping RNA-accessible sites with oligonucleotide libraries. Nucleic Acids Res 24:1901–1907

    Article  CAS  PubMed  Google Scholar 

  • Holzmayer TA, Pestov DG, Roninson IB (1992) Isolation of dominant negativemutants and inhibitory antisense RNA sequences by expression selection of random DNA fragments. Nucleic Acids Res 20:711–717

    CAS  PubMed  Google Scholar 

  • Inoue H, Hayase Y, Iwai S, Ohtsuka E (1988) Sequence-specific cleavage of RNA using chimeric DNA splints and RNase H. Nucleic Acids Symp Ser 135–138

    Google Scholar 

  • Jackson AL, Linsley PS (2004) Noise amidst the silence: off-target effects of siRNAs? Trends Genet 20:521–524

    Article  CAS  PubMed  Google Scholar 

  • Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen MR, Damgaard CK, Andersen ES, Podhajska A, Kjems J (2004) Agenomic selection strategy to identify accessible and dimerization blocking targets in the 5′-UTR of HIV-1 RNA. Nucleic Acids Res 32:e67

    Article  PubMed  Google Scholar 

  • Kawasaki H, Kuwabara T, Miyagishi M, Taira K (2003a) Identification of functional genes by libraries of ribozymes and siRNAs. Nucleic Acids Res Suppl 331–332

    Google Scholar 

  • Kawasaki H, Suyama E, Iyo M, Taira K (2003b) siRNAs generated by recombinant human Dicer induce specific and significant but target site-independent gene silencing in human cells. Nucleic Acids Res 31:981–987

    CAS  PubMed  Google Scholar 

  • Kilani AF, Trang P, Jo S, Hsu A, Kim J, Nepomuceno E, Liou K, Liu F (2000) RNase P ribozymes selected in vitro to cleave a viral mRNA effectively inhibit its expression in cell culture. J Biol Chem 275:10611–10622

    Article  CAS  PubMed  Google Scholar 

  • Kretschmer-Kazemi Far R, Sczakiel G (2003) The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 31:4417–4424

    Article  CAS  PubMed  Google Scholar 

  • Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644

    Article  CAS  PubMed  Google Scholar 

  • Lieber A, Strauss M (1995) Selection of efficient cleavage sites in target RNAs by using a ribozyme expression library. Mol Cell Biol 15:540–551

    CAS  PubMed  Google Scholar 

  • Luetzelberger M, Jakobsen MR, Kjems J (2005) SELEX strategies to identify antisense and protein target sites in RNA or heterogeneous nuclear ribonucleoprotein complexes. In: Hartmann RK, Bindereif A, Schoen A, Westhof E (eds) Handbook of RNA biochemistry, vol 2. Wiley-VCH Verlag GmbH and Co., Weinheim, pp 878–894

    Google Scholar 

  • Matveeva O, Felden B, Audlin S, Gesteland RF, Atkins JF (1997) A rapid in vitro method for obtaining RNA accessibility patterns for complementary DNA probes: correlation with an intracellular pattern and known RNA structures. Nucleic Acids Res 25:5010–5016

    Article  CAS  PubMed  Google Scholar 

  • Matveeva O, Felden B, Tsodikov A, Johnston J, Monia BP, Atkins JF, Gesteland RF, Freier SM (1998) Prediction of antisense oligonucleotide efficacy by in vitro methods. Nat Biotechnol 16:1374–1375

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat Rev Genet 6:24–35

    Article  CAS  PubMed  Google Scholar 

  • McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  CAS  PubMed  Google Scholar 

  • Milner N, Mir KU, Southern EM (1997) Selecting effective antisense reagents on combinatorial oligonucleotide arrays. Nat Biotechnol 15:537–541

    Article  CAS  PubMed  Google Scholar 

  • Minshull J, Hunt T (1986) The use of single-stranded DNA and RNase H to promote quantitative ‘hybrid arrest of translation’ of mRNA/DNA hybrids in reticulocyte lysate cell-free translations. Nucleic Acids Res 14:6433–6451

    CAS  PubMed  Google Scholar 

  • Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D (1996) Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 2:668–675

    Article  CAS  PubMed  Google Scholar 

  • Myers JW, Jones JT, Meyer T, Ferrell JE Jr (2003) Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat Biotechnol 21:324–328

    Article  CAS  PubMed  Google Scholar 

  • Naito Y, Yamada T, Ui-Tei K, Morishita S, Saigo K (2004) siDirect: highly effective, targetspecific siRNA design software for mammalian RNA interference. Nucleic Acids Res 32:W124–129

    CAS  PubMed  Google Scholar 

  • Ooms M, Verhoef K, Southern E, Huthoff H, Berkhout B (2004) Probing alternative foldings of the HIV-1 leader RNA by antisense oligonucleotide scanning arrays. Nucleic Acids Res 32:819–827

    Article  CAS  PubMed  Google Scholar 

  • Paddison PJ, Silva JM, Conklin DS, Schlabach M, Li M, Aruleba S, Balija V, O’shaughnessy A, Gnoj L, Scobie K, Chang K, Westbrook T, Cleary M, Sachidanandam R, McCombie WR, Elledge SJ, Hannon GJ (2004) A resource for large-scale RNA-interference-based screens in mammals. Nature 428:427–431

    Article  CAS  PubMed  Google Scholar 

  • Pan WH, Devlin HF, Kelley C, Isom HC, Clawson GA (2001) Aselection system for identifying accessible sites in target RNAs. RNA 7:610–621

    Article  CAS  PubMed  Google Scholar 

  • Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21:74–81

    Article  CAS  PubMed  Google Scholar 

  • Peyman A, Helsberg M, Kretzschmar G, Mag M, Grabley S, Uhlmann E (1995) Inhibition of viral growth by antisense oligonucleotides directed against the IE110 and the UL30 mRNA of herpes simplex virus type-1. Biol Chem Hoppe Seyler 376:195–198

    CAS  PubMed  Google Scholar 

  • Pickford AS, Cogoni C (2003) RNA-mediated gene silencing. Cell Mol Life Sci 60:871–882

    CAS  PubMed  Google Scholar 

  • Raj S, Liu F (2004) In vitro selection of external guide sequences for directing human RNase P to cleave a target mRNA. Methods Mol Biol 252:413–424

    CAS  PubMed  Google Scholar 

  • Raj SM, Liu F (2003) Engineering of RNase P ribozyme for gene-targeting applications. Gene 313:59–69

    Article  CAS  PubMed  Google Scholar 

  • Ruffner DE, Stormo GD, Uhlenbeck OC (1990) Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 29:10695–10702

    Article  CAS  PubMed  Google Scholar 

  • Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A 94:4262–4266

    CAS  PubMed  Google Scholar 

  • Saxena S, Jonsson ZO, Dutta A (2003) Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J Biol Chem 278:44312–44319

    CAS  PubMed  Google Scholar 

  • Sazani P, Kole R (2003) Modulation of alternative splicing by antisense oligonucleotides. Prog Mol Subcell Biol 31:217–239

    CAS  PubMed  Google Scholar 

  • Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg G, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M, Collins FS (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A 101:1892–1897

    Article  CAS  PubMed  Google Scholar 

  • Scherr M, Rossi JJ (1998) Rapid determination and quantitation of the accessibility to native RNAs by antisense oligodeoxynucleotides in murine cell extracts. Nucleic Acids Res 26:5079–5085

    Article  CAS  PubMed  Google Scholar 

  • Schubert S, Furste JP, Werk D, Grunert HP, Zeichhardt H, Erdmann VA, Kurreck J (2004) Gaining target access for deoxyribozymes. J Mol Biol 339:355–363

    Article  CAS  PubMed  Google Scholar 

  • Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  PubMed  Google Scholar 

  • Sen G, Wehrman TS, Myers JW, Blau HM (2004) Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nat Genet 36:183–189

    Article  CAS  PubMed  Google Scholar 

  • Shibahara S, Mukai S, Nishihara T, Inoue H, Ohtsuka E, Morisawa H (1987) Site-directed cleavage of RNA. Nucleic Acids Res 15:4403–4415

    CAS  PubMed  Google Scholar 

  • Shirane D, Sugao K, Namiki S, Tanabe M, Iino M, Hirose K (2004) Enzymatic production of RNAi libraries from cDNAs. Nat Genet 36:190–196

    Article  CAS  PubMed  Google Scholar 

  • Singer BS, Shtatland T, Brown D, Gold L (1997) Libraries for genomic SELEX. Nucleic Acids Res 25:781–786

    Article  CAS  PubMed  Google Scholar 

  • Sohail M, Southern EM (2000) Selecting optimal antisense reagents. Adv Drug Deliv Rev 44:23–34

    Article  CAS  PubMed  Google Scholar 

  • Stull RA, Zon G, Szoka FC Jr (1996) An in vitro messenger RNA binding assay as a tool for identifying hybridization-competent antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 6:221–228

    CAS  PubMed  Google Scholar 

  • Trang P, Kilani A, Kim J, Liu F (2000) A ribozyme derived from the catalytic subunit of RNase P from Escherichia coli is highly effective in inhibiting replication of herpes simplex virus 1. J Mol Biol 301:817–826

    Article  CAS  PubMed  Google Scholar 

  • Tucholski J, Skowron PM, Podhajska AJ (1995) MmeI, a class-IIS restriction endonuclease: purification and characterization. Gene 157:87–92

    Article  CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    CAS  PubMed  Google Scholar 

  • Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948

    Article  CAS  PubMed  Google Scholar 

  • Vacek M, Sazani P, Kole R (2003) Antisense-mediated redirection of mRNA splicing. Cell Mol Life Sci 60:825–833

    CAS  PubMed  Google Scholar 

  • Vickers TA, Koo S, Bennett CF, Crooke ST, Dean NM, Baker BF (2003) Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem 278:7108–7118

    Article  CAS  PubMed  Google Scholar 

  • Vlassov AV, Koval OA, Johnston BH, Kazakov SA (2004) ROLL: a method of preparation of gene-specific oligonucleotide libraries. Oligonucleotides 14:210–220

    Article  CAS  PubMed  Google Scholar 

  • Wang JY, Drlica K (2004) Computational identification of antisense oligonucleotides that rapidly hybridize to RNA. Oligonucleotides 14:167–175

    Article  CAS  PubMed  Google Scholar 

  • Wen JD, Gray DM (2004) Selection of genomic sequences that bind tightly to Ff gene 5 protein: primer-free genomic SELEX. Nucleic Acids Res 32:e182

    Article  PubMed  Google Scholar 

  • Westerhout EM, Ooms M, Vink M, Das AT, Berkhout B (2005) HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res 33:796–804

    Article  CAS  PubMed  Google Scholar 

  • Williams KP, Bartel DP (1995) PCR product with strands of unequal length. Nucleic Acids Res 23:4220–4221

    CAS  PubMed  Google Scholar 

  • Yamada T, Morishita S (2004) Accelerated off-target search algorithm for siRNA. Bioinformatics 21:1316–1324

    Article  PubMed  Google Scholar 

  • Zamecnik PC, Stephenson ML (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:280–284

    CAS  PubMed  Google Scholar 

  • Zhang HY, Mao J, Zhou D, Xu Y, Thonberg H, Liang Z, Wahlestedt C (2003) mRNA accessible site tagging (MAST): a novel high throughput method for selecting effective antisense oligonucleotides. Nucleic Acids Res 31:e72

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lützelberger, M., Kjems, J. (2006). Strategies to Identify Potential Therapeutic Target Sites in RNA. In: Erdmann, V., Barciszewski, J., Brosius, J. (eds) RNA Towards Medicine. Handbook of Experimental Pharmacology, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27262-3_12

Download citation

Publish with us

Policies and ethics