Skip to main content

Algebraic Flux Correction III. Incompressible Flow Problems

  • Chapter

Part of the book series: Scientific Computation ((SCIENTCOMP))

Summary

Algebraic FEM-FCT and FEM-TVD schemes are integrated into incompressible flow solvers based on the ‘Multilevel Pressure Schur Complement’ (MPSC) approach. It is shown that algebraic flux correction is feasible for nonconforming (rotated bilinear) finite element approximations on unstructured meshes. Both (approximate) operator-splitting and fully coupled solution strategies are introduced for the discretized Navier-Stokes equations. The need for development of robust and efficient iterative solvers (outer Newton-like schemes, linear multigrid techniques, optimal smoothers/preconditioners) for implicit high-resolution schemes is emphasized. Numerical treatment of extensions (Boussinesq approximation, Κ — ε turbulence model) is addressed and pertinent implementation details are given. Simulation results are presented for three-dimensional benchmark problems as well as for prototypical applications including multiphase and granular flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Becker, A. Sokolichin and G. Eigenberger, Gas-liquid flow in bubble columns and loop reactors: Part II. Chem. Eng. Sci. 49 (1994) 5747–5762.

    Article  Google Scholar 

  2. J. P. Boris, F. F. Grinstein, E. S. Oran und R. J. Kolbe, New insights into Large Eddy Simulation. Fluid Dynamics Research 10, Nr. 4-6, 1992, 199–227.

    Article  ADS  Google Scholar 

  3. A. J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comp. 22 (1968) 745–762.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. A. Christon, P.M. Gresho, S. B. Sutton, Computational predictability of natural convection flows in enclosures. In: K. J. Bathe (ed) Proc. First MIT Conference on Computational Fluid and Solid Mechanics, Elsevier, 2001, 1465–1468, 2001.

    Google Scholar 

  5. R. Codina and O. Soto, Finite element implementation of two-equation and algebraic stress turbulence models for steady incompressible flows. Int. J. Numer. Methods Fluids 30 (1999) no. 3, 309–333.

    Article  MATH  ADS  Google Scholar 

  6. M. Crouzeix and P. A. Raviart, Conforming and non-conforming finite element methods for solving the stationary Stokes equations. R.A.I.R.O. R-3 (1973) 77–104.

    Google Scholar 

  7. J. Donea, S. Giuliani, H. Laval and L. Quartapelle, Finite element solution of the unsteady Navier-Stokes equations by a fractional step method. Comput. Meth. Appl. Mech. Engrg. 30 (1982) 53–73.

    Article  ADS  MATH  Google Scholar 

  8. M. S. Engelman, V. Haroutunian and I. Hasbani, Segregated finite element algorithms for the numerical solution of large-scale incompressible flow problems. Int. J. Numer. Meth. Fluids 17 (1993) 323–348.

    Article  MATH  Google Scholar 

  9. M. S. Engelman, R. L. Sani and P. M. Gresho, The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow. Int. J. Numer. Meth. Fluids 2 (1982) 225–238.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, 1996.

    Google Scholar 

  11. C. Fleischer, Detaillierte Modellierung von Gas-Flüssigkeits-Reaktoren. Fortschr.-Ber. VDI-Reihe 3, Nr. 691, Düsseldorf: VDI Verlag, 2001.

    Google Scholar 

  12. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer Verlag, Berlin-Heidelberg, 1986.

    MATH  Google Scholar 

  13. R. Glowinski, T.W. Pan, T. I. Hesla, D. D. Joseph, J. Periaux, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J. Comput. Phys. 169 (2001) 363–426.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. P. M. Gresho, R. L. Sani and M. S. Engelman, Incompressible Flow and the Finite Element Method: Advection-Diffusion and Isothermal Laminar Flow. Wiley, 1998.

    Google Scholar 

  15. P.M. Gresho, On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix, Part 1: Theory, Part 2: Implementation. Int. J. Numer. Meth. Fluids 11 (1990) 587–659.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. F. Grinstein and C. Fureby, On Monotonically Integrated Large Eddy Simulation of Turbulent Flows Based on FCT Algorithms. Chapter 3 in this volume.

    Google Scholar 

  17. C. W. Hirt, A.A. Amsden and J.L. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14 (1974) 227–253.

    Article  MATH  ADS  Google Scholar 

  18. J. Hron, Numerical simulation of visco-elastic fluids. In: WDS’97, Freiburg, 1997.

    Google Scholar 

  19. T. J. R. Hughes, L. P. Franca and M. Balestra, A new finite element formulation for computational fluid mechanics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal order interpolation. Comp. Meth. Appl. Mech. Engrg. 59 (1986) 85–99.

    Article  MathSciNet  MATH  Google Scholar 

  20. V. John, Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier-Stokes equations. Int. J. Numer. Meth. Fluids 40 (2002) 775–798.

    Article  MATH  Google Scholar 

  21. D. D. Joseph, R. Glowinski, J. Feng, T.W. Pan, A three-dimensional computation of the force and torque on an ellipsoid settling slowly through a viscoelastic fluid. J. Fluid Mech. 283 (1995) 1–16.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. D. Kolymbas, An outline of hypoplasticity. Archive of Applied Mechanics 61 (1991) 143–151.

    MATH  Google Scholar 

  23. D. Kuzmin, Numerical simulation of mass transfer and chemical reactions in gas-liquid flows. In: Proceedings of the 3rd European Conference on Numerical Mathematics and Advanced Applications, World Scientific, 2000, 237–244.

    Google Scholar 

  24. D. Kuzmin and S. Turek, High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter. J. Comput. Phys. 198 (2004) 131–158.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. D. Kuzmin and S. Turek, Efficient numerical techniques for flow simulation in bubble column reactors. In: Preprints of the 5th German-Japanese Symposium on Bubble Columns, VDI/GVC, 2000, 99–104.

    Google Scholar 

  26. D. Kuzmin and S. Turek, Finite element discretization tools for gas-liquid flows. In: M. Sommerfeld (ed.), Bubbly Flows: Analysis, Modelling and Calculation, Springer, 2004, 191–201.

    Google Scholar 

  27. D. Kuzmin and S. Turek, Multidimensional FEM-TVD paradigm for convection-dominated flows. Technical report 253, University of Dortmund, 2004. In: Proceedings of the IV European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), Volume II, ISBN 951-39-1869-6.

    Google Scholar 

  28. D. Kuzmin and S. Turek, Numerical simulation of turbulent bubbly flows. Technical report 254, University of Dortmund, 2004. To appear in: Proceedings of the 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, September 22–24, 2004.

    Google Scholar 

  29. A. J. Lew, G. C. Buscaglia and P. M. Carrica, A note on the numerical treatment of the Κ-epsilon turbulence model. Int. J. Comput. Fluid Dyn. 14 (2001) no. 3, 201–209.

    Article  MATH  Google Scholar 

  30. J. Malek, K.R. Rajagopal, M. Ruzicka, Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Mathematical Models and Methods in Applied Sciences 5 (1995) 789–812.

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Medić and B. Mohammadi, NSIKE-an incompressible Navier-Stokes solver for unstructured meshes. INRIA Research Report 3644 (1999).

    Google Scholar 

  32. B. Mohammadi, A stable algorithm for the k-epsilon model for compressible flows. INRIA Research Report 1355 (1990).

    Google Scholar 

  33. B. Mohammadi and O. Pironneau, Analysis of the k-epsilon turbulence model. Wiley, 1994.

    Google Scholar 

  34. S. V. Patankar, Numerical Heat Transfer and Fluid Flow. McGraw-Hill, 1980.

    Google Scholar 

  35. A. Prohl, Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations. Advances in Numerical Mathematics. B. G. Teubner, Stuttgart, 1997.

    Google Scholar 

  36. L. Quartapelle, Numerical Solution of the Incompressible Navier-Stokes Equations. Birkhäuser Verlag, Basel, 1993.

    MATH  Google Scholar 

  37. A. Quarteroni, M. Tuveri, A. Veneziani, Computational vascular fluid dynamics. Comp. Vis. Science 2 (2000) 163–197.

    Article  MATH  Google Scholar 

  38. K.R. Rajagopal, Mechanics of non-Newtonian fluids. In G. P. Galdi and J. Necas (eds), Recent Developments in Theoretical Fluid Mechanics. Pitman Research Notes in Mathematics 291, Longman, 1993, 129–162.

    Google Scholar 

  39. R. Rannacher and S. Turek, A simple nonconforming quadrilateral Stokes element. Numer. Meth. PDEs 8 (1992), no. 2, 97–111.

    MathSciNet  MATH  Google Scholar 

  40. M. Schäafer and S. Turek (with support of F. Durst, E. Krause, R. Rannacher), Benchmark computations of laminar flow around cylinder. In E.H. Hirschel (ed.), Flow Simulation with High-Performance Computers II, Vol. 52 von Notes on Numerical Fluid Mechanics, Vieweg, 1996, 547–566.

    Google Scholar 

  41. R. Schmachtel, Robuste lineare und nichtlineare Lösungsverfahren für die inkompressiblen Navier-Stokes-Gleichungen. PhD thesis, University of Dortmund, 2003.

    Google Scholar 

  42. P. Schreiber, A new finite element solver for the nonstationary incompressible Navier-Stokes equations in three dimensions. PhD Thesis, University of Heidelberg, 1996.

    Google Scholar 

  43. P. Schreiber and S. Turek, An efficient finite element solver for the nonstationary incompressible Navier-Stokes equations in two and three dimensions. Proc. Workshop Numerical Methods for the Navier-Stokes Equations, Heidelberg, Oct. 25–28, 1993, Vieweg.

    Google Scholar 

  44. A. Sokolichin, Mathematische Modellbildung und numerische Simulation von Gas-Flüssigkeits-Blasenströmungen. Habilitation thesis, University of Stuttgart, 2004.

    Google Scholar 

  45. A. Sokolichin, G. Eigenberger and A. Lapin, Simulation of buoyancy driven bubbly flow: established simplifications and open questions. AIChE Journal 50 (2004) no. 1, 24–45.

    Article  Google Scholar 

  46. S. Turek, On discrete projection methods for the incompressible Navier-Stokes equations: An algorithmical approach. Comput. Methods Appl. Mech. Engrg. 143 (1997) 271–288.

    Article  MATH  MathSciNet  Google Scholar 

  47. S. Turek, Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach. LNCSE 6, Springer, 1999.

    Google Scholar 

  48. S. Turek et al., FEATFLOW: finite element software for the incompressible Navier-Stokes equations. User manual, University of Dortmund, 2000. Available at http://www.featflow.de.

    Google Scholar 

  49. S. Turek, C. Becker and S. Kilian, Hardware-oriented numerics and concepts for PDE software. Special Journal Issue for PDE Software, Elsevier, International Conference on Computational Science ICCS’2002, Amsterdam, 2002, FUTURE 1095(2003), 1–23.

    Google Scholar 

  50. S. Turek, C. Becker and S. Kilian, Some concepts of the software package FEAST. In: J. M. Palma, J. Dongarra, V. Hernandes (eds), VECPAR’98-Third International Conference for Vector and Parallel Processing, Lecture Notes in Computer Science, Springer, Berlin, 1999.

    Google Scholar 

  51. S. Turek and S. Kilian, An example for parallel ScaRC and its application to the incompressible Navier-Stokes equations. Proc. ENUMATH’97, World Science Publ., 1998.

    Google Scholar 

  52. S. Turek and R. Schmachtel, Fully coupled and operator-splitting approaches for natural convection. Int. Numer. Meth. Fluids 40 (2002) 1109–1119.

    Article  MATH  Google Scholar 

  53. A. M. P. Valli, G. F. Carey and A. L. G. A. Coutinho, Finite element simulation and control of nonlinear flow and reactive transport. In: Proceedings of the 10th International Conference on Numerical Methods in Fluids. Tucson, Arizona, 1998: 450–45.

    Google Scholar 

  54. A. M. P. Valli, G. F. Carey and A. L. G. A. Coutinho, Control strategies for timestep selection in simulation of coupled viscous flow and heat transfer. Commun. Numer. Methods Eng. 18 (2002), no.2, 131–139.

    Article  MATH  Google Scholar 

  55. S.P. Vanka, Implicit multigrid solutions of Navier-Stokes equations in primitive variables. J. Comp. Phys. 65 (1985) 138–158.

    Article  ADS  MathSciNet  Google Scholar 

  56. J. Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comp. 7 (1986) 870–891.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turek, S., Kuzmin, D. (2005). Algebraic Flux Correction III. Incompressible Flow Problems. In: Kuzmin, D., Löhner, R., Turek, S. (eds) Flux-Corrected Transport. Scientific Computation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27206-2_8

Download citation

Publish with us

Policies and ethics