Skip to main content

Algebraic Flux Correction II. Compressible Euler Equations

  • Chapter
Book cover Flux-Corrected Transport

Part of the book series: Scientific Computation ((SCIENTCOMP))

Summary

Algebraic flux correction schemes of TVD and FCT type are extended to systems of hyperbolic conservation laws. The group finite element formulation is employed for the treatment of the compressible Euler equations. An efficient algorithm is proposed for the edge-by-edge matrix assembly. A generalization of Roe’s approximate Riemann solver is derived by rendering all off-diagonal matrix blocks positive semi-definite. Another usable low-order method is constructed by adding scalar artificial viscosity proportional to the spectral radius of the cumulative Roe matrix. The limiting of antidiffusive fluxes is performed using a transformation to the characteristic variables or a suitable synchronization of correction factors for the conservative ones. The outer defect correction loop is equipped with a block-diagonal preconditioner so as to decouple the discretized Euler equations and solve them in a segregated fashion. As an alternative, a strongly coupled solution strategy (global BiCGSTAB method with a block-Gauß-Seidel preconditioner) is introduced for applications which call for the use of large time steps. Various algorithmic aspects including the implementation of characteristic boundary conditions are addressed. Simulation results are presented for inviscid flows in a wide range of Mach numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Anderson, Jr., Modern Compressible Flow, McGraw-Hill, 1990.

    Google Scholar 

  2. P. Arminjon and A. Dervieux, Construction of TVD-like artificial viscosities on 2-dimensional arbitrary FEM grids. INRIA Research Report 1111 (1989).

    Google Scholar 

  3. J.-C. Carette, H. Deconinck, H. Paillère and P. L. Roe, Multidimensional up-winding: Its relation to finite elements. Int. J. Numer. Methods Fluids 20 (1995) no. 8-9, 935–955.

    Article  MATH  ADS  Google Scholar 

  4. G. G. Cherny, Gas Dynamics (in Russian). Nauka, Moscow, 1988.

    Google Scholar 

  5. R. Codina and M. Cervera, Block-iterative algorithms for nonlinear coupled problems. In: M. Papadrakakis and G. Bugeda (eds), Advanced Computational Methods in Structural Mechanics, Chapter 7. Theory and Engineering Applications of Computational Methods, CIMNE, Barcelona, 1996.

    Google Scholar 

  6. D. L. Darmofal and B. Van Leer, Local preconditioning: Manipulating mother nature to fool father time. In: D. A. Caughey et al. (eds), Frontiers of Computational Fluid Dynamics, Singapore: World Scientific Publishing, 1998, 211–239.

    Google Scholar 

  7. H. Deconinck, H. Paillère, R. Struijs and P.L. Roe, Multidimensional upwind schemes based on fluctuation-splitting for systems of conservation laws. Comput. Mech. 11 (1993) no. 5-6, 323–340.

    Article  MATH  Google Scholar 

  8. M. J. Díaz, F. Hecht and B. Mohammadi, New progress in anisotropic grid adaptation for inviscid and viscous flows simulations. In: Proceedings of the 4th Annual International Meshing Roundtable. Sandia National Laboratories, 1995.

    Google Scholar 

  9. J. Donea and A. Huerta, Finite Element Methods for Flow Problems. Wiley, 2003.

    Google Scholar 

  10. J. Donea, V. Selmin and L. Quartapelle, Recent developments of the Taylor-Galerkin method for the numerical solution of hyperbolic problems. Numerical methods for fluid dynamics III, Oxford, 171–185 (1988).

    Google Scholar 

  11. M. Feistauer, J. Felcman and I. Straškraba, Mathematical and Computational Methods for Compressible Flow. Clarendon Press, Oxford, 2003.

    MATH  Google Scholar 

  12. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, 1996.

    Google Scholar 

  13. C. A. J. Fletcher, Computational Techniques for Fluid Dynamics. Springer, 1988.

    Google Scholar 

  14. A. Harten and J. M. Hyman, Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50 (1983) 235–269.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. R. Hartmann and P. Houston, Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. J. Comput. Phys. 183 (2002) 508–532.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. P. W. Hemker and B. Koren, Defect correction and nonlinear multigrid for steady Euler equations. In: W. G. Habashi and M. M. Hafez (eds), Computational Fluid Dynamics Techniques. London: Gordon and Breach Publishers, 1995, 699–718.

    Google Scholar 

  17. C. Hirsch, Numerical Computation of Internal and External Flows. Vol. II: Computational Methods for Inviscid and Viscous Flows. John Wiley & Sons, Chichester, 1990.

    Google Scholar 

  18. D. Kuzmin, M. Möller and S. Turek, Multidimensional FEM-FCT schemes for arbitrary time-stepping. Int. J. Numer. Meth. Fluids 42 (2003) 265–295.

    Article  MATH  Google Scholar 

  19. D. Kuzmin, M. Möller and S. Turek, High-resolution FEM-FCT schemes for multidimensional conservation laws. Technical report 231, University of Dortmund, 2003. To appear in: Comput. Methods Appl. Mech. Engrg.

    Google Scholar 

  20. R. J. LeVeque, Numerical Methods for Conservation Laws. Birkhäuser, 1992.

    Google Scholar 

  21. R. J. LeVeque, Simplified multi-dimensional flux limiting methods. Numerical Methods for Fluid Dynamics IV (1993) 175–190.

    MathSciNet  ADS  Google Scholar 

  22. R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2003.

    Google Scholar 

  23. R. J. LeVeque, CLAWPACK-Conservation LAWs PACKage, available at the URL http://www.amath.washington.edu/∼claw/.

    Google Scholar 

  24. R. Löhner, K. Morgan, J. Peraire and M. Vahdati, Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations. Int. J. Numer. Meth. Fluids 7 (1987) 1093–1109.

    Article  MATH  Google Scholar 

  25. R. Löhner, Applied CFD Techniques: An Introduction Based on Finite Element Methods. Wiley, 2001.

    Google Scholar 

  26. J. F. Lynn, Multigrid Solution of the Euler Equations with Local Preconditioning. PhD thesis, University of Michigan, 1995.

    Google Scholar 

  27. P. R. M. Lyra, Unstructured Grid Adaptive Algorithms for Fluid Dynamics and Heat Conduction. PhD thesis, University of Wales, Swansea, 1994.

    Google Scholar 

  28. P. R. M. Lyra, K. Morgan, J. Peraire and J. Peiro, TVD algorithms for the solution of the compressible Euler equations on unstructured meshes. Int. J. Numer. Meth. Fluids 19 (1994) 827–847.

    Article  MATH  Google Scholar 

  29. P. R. M. Lyra and K. Morgan, A review and comparative study of upwind biased schemes for compressible flow computation. I: 1-D first-order schemes. Arch. Comput. Methods Eng. 7 (2000) no. 1, 19–55.

    Article  MathSciNet  MATH  Google Scholar 

  30. P.R.M. Lyra and K. Morgan, A review and comparative study of upwind biased schemes for compressible flow computation. II: 1-D higher-order schemes. Arch. Comput. Methods Eng. 7 (2000) no. 3, 333–377.

    Article  MathSciNet  MATH  Google Scholar 

  31. P.R.M. Lyra and K. Morgan, A review and comparative study of upwind biased schemes for compressible flow computation. III: Multidimensional extension on unstructured grids. Arch. Comput. Methods Eng. 9 (2002) no. 3, 207–256.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Möller, Hochauflösende FEM-FCT-Verfahren zur Diskretisierung von konvektionsdominanten Transportproblemen mit Anwendung auf die kompressiblen Eulergleichungen. Diploma thesis, University of Dortmund, 2003.

    Google Scholar 

  33. M. Möller, D. Kuzmin and S. Turek, Implicit FEM-FCT algorithm for compressible flows. To appear in: Proceedings of the European Conference on Numerical Mathematics and Advanced Applications (August 18–22, 2003, Prague), to be published by Springer.

    Google Scholar 

  34. K. Morgan and J. Peraire, Unstructured grid finite element methods for fluid mechanics. Reports on Progress in Physics, 61 (1998), no. 6, 569–638.

    Google Scholar 

  35. NPARC Alliance, Computational Fluid Dynamics (CFD) Verification and Validation Web Site: http://www.grc.nasa.gov/WWW/wind/valid/.

    Google Scholar 

  36. P. L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43 (1981) 357–372.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. A. Rohde, Eigenvalues and eigenvectors of the Euler equations in general geometries. AIAA Paper 2001–2609.

    Google Scholar 

  38. V. Selmin, Finite element solution of hyperbolic equations. I. One-dimensional case. INRIA Research Report 655 (1987).

    Google Scholar 

  39. V. Selmin, Finite element solution of hyperbolic equations. II. Two-dimensional case. INRIA Research Report 708 (1987).

    Google Scholar 

  40. D. Sidilkover, A genuinely multidimensional upwind scheme and efficient multi-grid solver for the compressible Euler equations, ICASE Report No. 94-84, 1994.

    Google Scholar 

  41. G. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27 (1978) 1–31.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, 1999.

    Google Scholar 

  43. S. Turek, Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach, LNCSE 6, Springer, 1999.

    Google Scholar 

  44. P. Wesseling, Principles of Computational Fluid Dynamics. Springer, 2001.

    Google Scholar 

  45. H. C. Yee, Numerical approximations of boundary conditions with applications to inviscid gas dynamics. NASA report TM-81265, 1981.

    Google Scholar 

  46. H. C. Yee, Construction of explicit and implicit symmetric TVD schemes and their applications. J. Comput. Phys. 43 (1987) 151–179.

    Article  MathSciNet  ADS  Google Scholar 

  47. H. C. Yee, R. F. Warming and A. Harten, Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations. J. Comput. Phys. 57 (1985) 327–360.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. S. T. Zalesak, The Design of Flux-Corrected Transport (FCT) Algorithms For Structured Grids. Chapter 2 in this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuzmin, D., Möller, M. (2005). Algebraic Flux Correction II. Compressible Euler Equations. In: Kuzmin, D., Löhner, R., Turek, S. (eds) Flux-Corrected Transport. Scientific Computation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27206-2_7

Download citation

Publish with us

Policies and ethics