Skip to main content

On Monotonically Integrated Large Eddy Simulation of Turbulent Flows Based on FCT Algorithms

  • Chapter
Flux-Corrected Transport

Part of the book series: Scientific Computation ((SCIENTCOMP))

Summary

Non-classical Large Eddy Simulation (LES) approaches based on using the unfiltered flow equations instead of the filtered ones have been the subject of considerable interest during the last decade. In the Monotonically Integrated LES (MILES) approach, flux-limiting schemes are used to emulate the characteristic turbulent flow features in the high-wavenumber end of the inertial subrange region. Mathematical and physical aspects of implicit SGS modeling using non-linear flux-limiters are addressed using the modified LES-equation formalism. FCT based MILES performance is demonstrated in selected case studies including 1) canonical flows (homogeneous isotropic turbulence and turbulent channel flows), 2) complex free and wall-bounded flows (rectangular jets and flow past a prolate spheroid), 3) very-complex flows at the frontiers of current unsteady flow simulation capabilities (submarine hydrodynamics).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sagaut P.; 2002, “Large Eddy Simulation for Incompressible Flows”, Springer, New York.

    MATH  Google Scholar 

  2. Liu S., Meneveau C. and Katz J.; 1994, “On the Properties of Similarity Subgridscale Models as Deduced from Measurements in a Turbulent Jet”, J. Fluid Mech., 275, p 83.

    Article  ADS  Google Scholar 

  3. Bardina J.; 1983, “Improved Turbulence Models based on Large Eddy Simulation of Homogeneous Incompressible Turbulent Flows”, Ph.D. Thesis, Stanford University.

    Google Scholar 

  4. Adams N.A. and Stolz S.; 2001, “Deconvolution Methods for Subgrid-Scale Approximation in LES”, in Modern Simulation Strategies for Turbulent Flows, B.J. Geurts, ed., Edwards, Philadelphia, p.21.

    Google Scholar 

  5. Spalart P.R., Jou, W.H., Strelets M. and Allmaras S.R.; 1997, “Comments on the Feasibility of LES for Wings, and on Hybrid RANS/LES Approach”, in Advances in DNS/LES, First AFOSR International Conference in DNS/LES (Greyden Press, Columbus).

    Google Scholar 

  6. Boris J.P.; 1989, “On Large Eddy Simulation Using Subgrid Turbulence Models”, in Whither Turbulence? Turbulence at the Crossroads, J.L. Lumley Ed., Springer, New York, p 344.

    Google Scholar 

  7. Boris J.P., Grinstein F.F., Oran E.S. and Kolbe R.J.; 1992, “New insights into Large Eddy Simulations”, Fluid Dynamics Research, 10, p 199.

    Article  ADS  Google Scholar 

  8. Alternative LES and Hybrid RANS/LES; 2002, edited by F.F. Grinstein and G.E. Karniadakis, J. Fluids Engineering, 124, pp. 821–942.

    Google Scholar 

  9. Special Issue of Internat. J. Numer. Methods in Fluids, 39, (2002), ed. by D. Drikakis, pp. 763–864.

    Google Scholar 

  10. von Neumann J. and Richtmyer R.D.; 1950, “A Method for the Numerical Calculation of Hydrodynamic Shocks”, J. Applied Physics, 21, p 232.

    Article  MATH  ADS  Google Scholar 

  11. Smagorinsky J.; 1983, “The Beginnings of Numerical Weather Prediction and General Circulation Modeling: Early Recollections”, Advances in Geophysics, 25, p 3.

    Article  ADS  Google Scholar 

  12. Smagorinsky, J.; 1963, “General Circulation Experiments with the Primitive Equations. I. The Basic Experiment”, Monthly Weather Rev., 101, p 99.

    Article  ADS  Google Scholar 

  13. Fureby C. and Grinstein F.F.; 1999, “Monotonically Integrated Large Eddy Simulation of Free Shear Flows”, AIAA. J., 37, 544.

    Article  ADS  Google Scholar 

  14. Fureby C. and Grinstein F.F.; 2002, “Large Eddy Simulation of High Reynolds Number Free and Wall Bounded Flows”, J. Comp. Phys. 181, p 68.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Schumann U.; 1975, “Subgrid Scale Model for Finite Difference Simulation of Turbulent Flows in Plane Channels and Annuli”, J. Comput. Phys., 18, p. 376.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Carati D., Winckelmans G.S. & Jeanmart H.; 1999, “Exact Expansions for Filtered Scales Modeling with a wide class of LES Filters”, in Direct and Large Eddy Simulation III, Eds. Voke, Sandham & Kleiser, p 213.

    Google Scholar 

  17. Godunov S.K.; 1999, “Reminiscences About Difference Schemes”, J. Comp. Phys., 153, pp. 6–25.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Margolin L.G. and Rider W.J.; 2002, “A Rationale for Implicit Turbulence Modeling”, J. Numer. Methods in Fluids, 39. p 821.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Jimenez J., Wray A., Saffman P., and Rogallo R.; 1993, “The Structure of Intense Vorticity in Isotropic Turbulence”, J. Fluid Mech., 255, p 65.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Shao L., Sarkar S. and Pantano C.; 1999, “On the Relationship Between the Mean Flow and Subgrid Stresses in Large Eddy Simulation of Turbulent Shear Flows”, Phys. Fluids, 11, p 1229.

    Article  ADS  MATH  Google Scholar 

  21. Borue V. and Orszag S.A.; 1998, “Local Energy Flux and Subgrid-Scale Statistics in Three Dimensional Turbulence”, J. Fluid Mech., 366, p 1.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Patnaik G., Boris J.P., Grinstein F.F., and Iselin J.P.; 2004, “Large Scale Urban Simulations with the MILES Approach”, Chapter 4 in this volume.

    Google Scholar 

  23. Hirsch C.; 1999, “Numerical Computation of Internal and External Flows”, J. Wiley and Sones.

    Google Scholar 

  24. Albada, G.D., van Leer, B., van Roberts, W.W.; 1982, “A Comparative Study of Computational Methods in Cosmic Gas Dynamics”, Astron. Astrophys., 108, p 76.

    ADS  MATH  Google Scholar 

  25. Jasak H., Weller H.G., and Gosman A.D.; 1999, “High Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes”, Int. J. Numer. Meth. Fluids, 31, p 431.

    Article  MATH  Google Scholar 

  26. Boris J.P. & Book D.L.; 1973, “Flux Corrected Transport I, SHASTA, a Fluid Transport Algorithm that Works”, J. Comp. Phys. 11, p 38.

    Article  ADS  Google Scholar 

  27. Colella P, & Woodward P.; 1984, “The Piecewise Parabolic Method (PPM) for Gas Dynamic Simulations”, J. Comp. Phys., 54, p 174.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Moser R.D., Kim J. & Mansour N.N.; 1999, “Direct Numerical Simulation of Turbulent Channel Flow up to Re τ = 590”, Phys. Fluids, 11, p 943.

    Article  ADS  MATH  Google Scholar 

  29. Porter D.H., Pouquet A. and Woodward P.R.; 1994, “Kolmogorov-like Spectra in Decaying Three-Dimensional Supersonic Flows”, Phys. Fluids, 6, p 2133.

    Article  ADS  MATH  Google Scholar 

  30. Garnier E., Mossi M., Sagaut P., Comte P., and Deville M.; 2000, “On the Use of Shock-Capturing Schemes for Large Eddy Simulation”, J. Comp. Phys., 153, p. 273.

    Article  ADS  Google Scholar 

  31. Okong’o N., Knight D.D., and Zhou G.; 2000, “Large Eddy Simulations Using an Unstructured Grid Compressible Navier-Stokes Algorithm”, Int. J. Comp. Fluid Dyn., 13, p. 303.

    Article  MathSciNet  MATH  Google Scholar 

  32. Eswaran V. and Pope S.B.; 1988, “An Examination of Forcing in Direct Numerical Simulation of Turbulence”, Computers and Fluids, 16, p 257.

    Article  ADS  MATH  Google Scholar 

  33. Fureby C., Tabor G., Weller H. and Gosman D.; 1997, “A Comparative Study of Sub Grid Scale Models in Isotropic Homogeneous Turbulence”, Phys. Fluids, 9, p 1416.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Kim W.-W. and Menon S.; 1999, “A new Incompressible Solver for Large-Eddy Simulations”, Int. J. Num. Fluid Mech., 31, p 983.

    Article  MATH  Google Scholar 

  35. Driscoll R.J. and Kennedy L.A.; 1983, “A Model for the Turbulent Energy Spectrum”, Phys. Fluids, 26, p 1228.

    Article  ADS  MATH  Google Scholar 

  36. Wei T. and Willmarth W.W.; 1989, “Reynolds Number Effects on the Structure of a Turbulent Channel Flow”, J. Fluid Mech., 204, p 57.

    Article  ADS  Google Scholar 

  37. Nikitin N.V., Nicoud F., Wasistho B., Squires K. D. and Spalart P.R.; 2000, “An Approach to Wall Modelling in Large Eddy Simulations”, Phys. Fluids, 12, p 1629.

    Article  ADS  Google Scholar 

  38. Fureby C., Alin N., Wikström N., Menon S., Persson L., and Svanstedt N.; 2003, “On Large Eddy Simulations of High Re-number Wall Bounded Flows”, AIAA Paper 2003-0066, To appear in the AIAA J., Feb issue.

    Google Scholar 

  39. Grinstein F.F. Oran E.S. and Boris J.P.; 1991, “Pressure Field, Feedback and Global Instabilities of Subsonic Spatially Developing Mixing Layers,” Physics of Fluids, 3,10, pp. 2401–2409.

    Article  ADS  MATH  Google Scholar 

  40. Grinstein F.F. and DeVore C.R.; 2002, “On Global Instabilities in Countercurrent Jets,” Physics of Fluids, 14, no. 3, pp. 1095–1100.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Grinstein F.F.; 2001, “Vortex Dynamics and Entrainment in Regular Free Jets,” J. Fluid Mechanics, 437, pp. 69–101.

    Article  ADS  MATH  Google Scholar 

  42. Hussain F. and Husain H.S.; 1989, “Elliptic Jets. Part I. Characteristics of Unexcited and Excited Jets,” J. Fluid Mechanics, 208, pp. 257–320.

    Article  ADS  Google Scholar 

  43. Wikström N. et al.; 2003, “Large Eddy Simulation of the Flow Past an Inclined Prolate Spheroid,” Proc. 3rd Int’l Symp.Turbulence and Shear Flow Phenomena, Sendai, Japan.

    Google Scholar 

  44. Wetzel T.G., Simpson R.L. and Chesnakas C.J.; 1998, “Measurement of Three-Dimensional Crossflow Separation,” J. Am. Inst. Aeronautics and Astronautics, 36, pp. 557–564.

    Google Scholar 

  45. Alin N., Svennberg U. and Fureby C., 2003, “Large Eddy Simulation of Flows Past Simplified Submarine Hulls,” Proc. 8th Int’l Conf. Numerical Ship Hydrodynamics, Busan, Korea, pp. 208–222.

    Google Scholar 

  46. Groves N.C., Huang T.T., and Chang M.S.; 1989, “Geometric Characteristics of DARPA SUBOFF Models”, Report DTRC/SHD-1298-01, David Taylor Research Ctr., 1989.

    Google Scholar 

  47. Huang T.T., et al.; 1992, “Measurements of Flows over an Axisymmetric Body with Various Appendages (DARPA SUBOFF Experiments),” Proc. 19th Symp. Naval Hydrodynamics, Seoul, Korea.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grinstein, F.F., Fureby, C. (2005). On Monotonically Integrated Large Eddy Simulation of Turbulent Flows Based on FCT Algorithms. In: Kuzmin, D., Löhner, R., Turek, S. (eds) Flux-Corrected Transport. Scientific Computation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27206-2_3

Download citation

Publish with us

Policies and ethics