Skip to main content

Divergence Free High Order Filter Methods for the Compressible MHD Equations

  • Conference paper
Modeling, Simulation and Optimization of Complex Processes
  • 1392 Accesses

Summary

The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard divergence cleaning is not required by the present filter approach. For certain MHD test cases, divergence free preservation of the magnetic fields has been achieved.

Part of this work was performed while the second author was a RIACS visiting scientist at NASA Ames Research Center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Cargo and G. Gallice, Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws, J. Comput. Phys., 136(1997), 446–466.

    Article  MathSciNet  Google Scholar 

  2. A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg, Hyperbolic Divergence Cleaning for the MHD Equations, J. Comput. Phys., 175(2002), 645–673.

    Article  MathSciNet  Google Scholar 

  3. R.B. Dahlburg and J.M. Picone, Evolution of the Orszag-Tang Vortex System in a Compressible Medium. L Initial Average Subsonic Flow, Phys. fluid B, 1(1989), 2153–2171.

    Article  MathSciNet  Google Scholar 

  4. W. Dai and P. R. Woodward, A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations J. Comput. Phys., 142(1998), 331–369.

    Article  MathSciNet  Google Scholar 

  5. W. Dai and P.R. Woodward, On the Divergence-Free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamic Flows, Astrophys. J., 494(1998), 317–335.

    Article  Google Scholar 

  6. H. De Sterck, Multi-Dimensional Upwind Constrained Transport on Unstructured Grids for Shallow Water Magnetohydrodynamics, AIAA Paper 2001–2623, (2001).

    Google Scholar 

  7. C.R. Evans and J.F. Hawley, Simulation of Magnetohydrodynamic Flows: A Constrained Transport Method, Astrophys. J. 332(1988), 659–677.

    Article  Google Scholar 

  8. A. Frank, T.W. Jone, D. Ryu and J.B. Gaalaas, The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Two-Dimensional Study, Astrophys. J. 460(1996), 777–793.

    Article  Google Scholar 

  9. G. Gallice, Systéme DÉuler-Poisson, Magnétohydrodynamique et Schemeas de Roe, PhD Thesis, L'Université Bordeaux I, 1997.

    Google Scholar 

  10. S.K. Godunov Symmetric Form of the Equations of Magnetohydrodynamics, Numerical Methods for Mechanics of Continuum Medium, 13(1972), 26–34.

    Google Scholar 

  11. A. Harten and J.M. Hyman, A Self-Adjusting Grid for the Computation of Weak Solutions of Hyperbolic Conservation Laws,, J. Comput. Phys., 50(1983), 235–269.

    Article  MathSciNet  Google Scholar 

  12. G.-S. Jiang and C.-W. Shu, Efficient Implementation of Weighted ENO schemes, J. Comput. Phys., 126(1996), 202–228.

    Article  MathSciNet  Google Scholar 

  13. A. Malagoli, G. Bodo and R. Rosner, On the Nonlinear Evolution of Magnetohydrodynamic Kelvin-Helmholtz Instabilities' Astrophys. J. 456(1996), 708–716.

    Article  Google Scholar 

  14. S.A. Orszag and C.M. Tang Small Scale Structure of Two-Dimensional Magnetohydrodynamic Turbulence, J. Fluid Mech., 90(1979), 129–143.

    Article  Google Scholar 

  15. J.M. Picone and R.B. Dahlburg, Evolution of the Orszag-Tang Vortex System in a Compressible Medium. II. Supersonic Flow, Phys. Fluid B, 3(1991), 29–44.

    Article  Google Scholar 

  16. K.G. Powell, An Approximate Riemann Solver for Magnetohydrodynamics (That works in More than One Dimension), ICASE-Report 94-24, NASA Langley Research Center, April 1994.

    Google Scholar 

  17. K.G. Powell, P.L. Roe, T.J. Linde, T.I. Gombosi and D.L. De Zeeuw, A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics, J. Comput. Phys., 154(1999), 284–309.

    Article  MathSciNet  Google Scholar 

  18. B. Sjögreen and H. C. Yee, Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for Shock-Turbulence Computation, RIACS Technical Report TRO1.01, NASA Ames research center (Oct 2000), to appear, J. Scient. Computing.

    Google Scholar 

  19. B. Sjögreen and H. C. Yee, Grid Convergence of High Order Methods for Multiscale Complex Unsteady Viscous Compressible Flows, RIACS Technical Report TR01.06, April, 2001, NASA Ames research center; AIAA 2001–2599, Proceedings of the 15th AIAA CFD Conference, June 11–14, 2001, Anaheim, CA., also, J. Comput. Phys., 185(2003), 1–26.

    Article  Google Scholar 

  20. B. Sjögreen and H. C. Yee, Low Dissipative High Order Numerical Simulations of Supersonic Reactive Flows, RIACS Report TR01-017, NASA Ames Research Center (May 2001); Proceedings of the ECCO-MAS Computational Fluid Dynamics Conference 2001, Swansea, Wales, UK, September 4–7, 2001.

    Google Scholar 

  21. B. Sjögreen and H. C. Yee, Analysis of High Order Difference Methods for Multiscale Complex Compressible Flows, Proceedings of the 9th International Conference on Hyperbolic Problems, March 25–29, 2002, Pasadena, CA.

    Google Scholar 

  22. B. Sjögreen and H.C. Yee, Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, I: Basic Theory, AIAA 2003–4118, Proceedings of the 16th AIAA/CFD Conference, June 23–26, 2003, Orlando, Fl.

    Google Scholar 

  23. G. Tóth, The div B=0 Constraint in Shock-Capturing Magnetohydrodynamic Codes, J. Comput. Phys., 161(2000), 605–652.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Vinokur, A rigorous derivation of the MHD Equations Based only on Faraday's and Ampére's Laws, Presentation at LANL MHD Workshop on ▽·B Cleaning, August, 1996.

    Google Scholar 

  25. M. Vinokur and H.C. Yee, Extension of Efficient Low Dissipative High Order Schemes for 3-D Curvilinear Moving Grids, NASA TM 209598, June 2000.

    Google Scholar 

  26. H.C. Yee, A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods, VKI Lecture Series 1989-04, March 6–10, 1989, also NASA TM-101088, Feb. 1989.

    Google Scholar 

  27. H.C. Yee, N.D. Sandham, N.D., and M.J. Djomehri, Low Dissipative High Order Shock-Capturing Methods Using Characteristic-Based Filters, J. Comput. Phys., 150(1999), 199–238.

    Article  MathSciNet  Google Scholar 

  28. H.C. Yee, M. Vinokur, M., and M.J. Djomehri, Entropy Splitting and Numerical Dissipation, J. Comput. Phys., 162(2000), 33–81.

    Article  MathSciNet  Google Scholar 

  29. H.C. Yee and B. Sjögreen, Designing Adaptive Low Dissipative High Order Schemes for Long-Time Integrations, Turbulent Flow Computation, (Eds. D. Drikakis & B. Geurts), Kluwer Academic Publisher (2002); also RIACS Technical Report TR01-28, Dec. 2001.

    Google Scholar 

  30. H.C. Yee and B. Sjögreen, Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, II: Minimization of ▽·B Numerical Error RIACS Report TR03.10, July 2003.

    Google Scholar 

  31. K.S. Yee, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propagat., 14(1966), 302–307.

    Article  Google Scholar 

  32. A.L. Zachary, A. Malagoli and P. Colella, A Higher-Order Godunov Method for Multidimensional Ideal Magnetohydrodynamics, SIAM J. Sci. Comput., 15(1994), 263–284

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yee, H.C., Sjögreen, B. (2005). Divergence Free High Order Filter Methods for the Compressible MHD Equations. In: Bock, H.G., Phu, H.X., Kostina, E., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27170-8_42

Download citation

Publish with us

Policies and ethics