Skip to main content

Numerical Methods for Nonlinear Experimental Design

  • Conference paper

Summary

Nonlinear experimental design leads to a challenging class of optimization problems which occur in the procedure of the validation of process models. This paper discusses the formulation of such problems for a general class of underlying process models, presents numerical methods for the solution and shows their successful application to industrial processes.

This work was supported by the German Research Foundation (DFG) and the German Federal Ministry of Education and Research (BMBF).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. C. Atkinson and A. N. Donev. Optimum Experimental Designs. Oxford University Press, 1992.

    Google Scholar 

  2. A. E. Altmann-Dieses, J. P. Schlöder, H. G. Bock, and O. Richter. Optimal experimental design for parameter estimation in column outflow experiments. Water Resources Research, 38(10), 2002.

    Google Scholar 

  3. I. Bauer, H. G. Bock, S. Körkel, and J. P. Schlöder. Numerical methods for initial value problems and derivative generation for DAE models with application to optimum experimental design of chemical processes. In F. Keil, W. Mackens, H. Voss, and J. Werther, editors, Scientific Computing in Chemical Engineering II, volume 2, pages 282–289, Berlin, Heidelberg, 1999. Springer-Verlag.

    Google Scholar 

  4. I. Bauer, H. G. Bock, S. Körkel, and J. P. Schlöder. Numerical methods for optimum experimental design in DAE systems. Journal of Computational and Applied Mathematics, 120:1–25, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Bauer, H. G. Bock, and J. P. Schlöder. DAESOL — a BDF code for the numerical solution of differential-algebraic equations. Preprint, IWR der Universität Heidelberg, SFB 359, November 1999.

    Google Scholar 

  6. I. Bauer, M. Heilig, S. Körkel, A. Kud, A. Mayer, and O. Wörz. Versuchsplanung am Beispiel einer Phosphin-und Urethanreaktion. 14. 10. 1998.

    Google Scholar 

  7. H. G. Bock, E. Kostina, and J. P. Schlöder. On the role of natural level functions to achieve global convergence for damped newton methods. In M. J. D. Powell and S. Scholtes, editors, System Modelling and Optimization: Methods, Theory and Applications, 19th IFIP TC7 Conference on System Modelling and Optimization, July 12–16, 1999, Cambridge, UK, volume 174 of IFIP Conference Proceedings, pages 51–74. Kluwer, 2000.

    Google Scholar 

  8. H. G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. Bonner Mathematische Schriften 183, 1987.

    Google Scholar 

  9. M. Baltes, R. Schneider, C. Sturm, and M. Reuss. Optimal Experimental Design for Parameter Estimation in Unstructured Growth Models. Biotechnol. Prog., 10:480–488, 1994.

    Article  Google Scholar 

  10. V. G. Dovi, A. P. Reverberi, and L. Acevedo-Duarte. New Procedure for Optimal Design of Sequential Experiments in Kinetic Models. Ind. Eng. Chem. Res., 33:62–68, 1994.

    Article  Google Scholar 

  11. V. V. Fedorov. Theory of Optimal Experiments. Probability And Mathematical Statistics. Academic Press, London, 1972.

    Google Scholar 

  12. P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J. Opt., 12:979–1006, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Griewank. Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation. Frontiers in Applied Mathematics. SIAM, 2000.

    Google Scholar 

  14. L. M. Haines. Optimal Design For Nonlinear Regression Models. Commun. Statist.-Theory Meth., 22(6):1613–1627, 1993.

    MATH  Google Scholar 

  15. R. Hettich and K. O. Kortanek. Semi-infinite programming: Theory, methods, and applications. SIAM Review, 35(3):380–429, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Körkel, I. Bauer, H. G. Bock, and J. P. Schlöder. A sequential approach for nonlinear optimum experimental design in DAE systems. In F. Keil, W. Mackens, H. Voss, and J. Werther, editors, Scientific Computing in Chemical Engineering II, volume 2, pages 338–345, Berlin, Heidelberg, 1999. Springer-Verlag.

    Google Scholar 

  17. S. Körkel, E. Kostina, H. G. Bock, and J. P. Schlöder. Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes. Optimization Methods and Software, to appear in 2004.

    Google Scholar 

  18. S. Körkel. Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen. PhD thesis, Universität Heidelberg, available at http://www.ub.uni-heidelberg.de/archiv/2980, 2002.

    Google Scholar 

  19. T. W. Lohmann, H. G. Bock, and J. P. Schlöder. Numerical Methods for Parameter Estimation and Optimal Experiment Design in Chemical Reaction Systems. Ind. Eng. Chem. Res., 31:54–57, 1992.

    Article  Google Scholar 

  20. T. W. Lohmann. Ein numerisches Verfahren zur Berechnung optimaler Versuchspläne für beschränkte Parameteridentifizierungsprobleme. Reihe Informatik. Verlag Shaker, Aachen, 1993.

    Google Scholar 

  21. P. Oinas, I. Turunen, and H. Haario. Experimental Design With Steady-State And Dynamic Models Of Multiphase Reactors. Chemical Engineering Science, 47(13/14):3689–3696, 1992.

    Article  Google Scholar 

  22. F. Pukelsheim. Optimal Design of Experiments. John Wiley & Sons, Inc., New York, 1993.

    MATH  Google Scholar 

  23. Z. H. Qureshi, T. S. Ng, and G. C. Goodwin. Optimum experimental design for identification of distributed parameter systems. Int. J. Control, 31(1):21–29, 1980.

    MathSciNet  MATH  Google Scholar 

  24. P. M. Reilly, R. Bajramovic, G. E. Blau, D. R. Branson, and M. W. Sauerhoff. Guidelines for the Optimal Design of Experiments to Estimate Parameters in First Order Kinetic Models. The Canadian Journal of Chemical Engineering, 55:614, 1977.

    Article  Google Scholar 

  25. P. E. Rudolph and G. Herrendörfer. Optimal Experimental Design and Accuracy of Parameter Estimation for Nonlinear Regression Models Used in Long-term Selection. Biom. J., 37(2):183–190, 1995.

    MATH  Google Scholar 

  26. J. P. Schlöder. Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung. Dissertation, Hohe Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen Friedrich-Wilhelms-Universität zu Bonn, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Körkel, S., Kostina, E. (2005). Numerical Methods for Nonlinear Experimental Design. In: Bock, H.G., Phu, H.X., Kostina, E., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27170-8_20

Download citation

Publish with us

Policies and ethics