Skip to main content

Exact Numerical Treatment of Finite Quantum Systems Using Leading-Edge Supercomputers

  • Conference paper

Summary

Using exact diagonalization and density matrix renormalization group techniques a finite-size scaling study in the context of the Peierls-insulator Mott-insulator transition is presented. Program implementation on modern supercomputers and performance aspects are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For an overview on several important aspects of strongly correlated electron systems see Science Vol. 288 (2000)

    Google Scholar 

  2. A. R. Bishop and B. I. Swanson, Novel Electronic Materials: the MX Family. Los Alamos Science 21, 133 (1993)

    Google Scholar 

  3. J. Hubbard, Electron Correlations in Narrow Energy Bands. Proc. Roy. Soc. London A 276, 238–257 (1963); J. Kanamori, Electron Correlation and Ferromagnetism of Transition Metals, Prog. Theor. Phys. 30, 275–289 (1963)

    Google Scholar 

  4. T. Holstein, Studies of Polaron Motion. 1. The Molecular Crystal Model. Ann. Phys. (N.Y.) 8, 325–342 (1959); Studies of Polaron Motion. 2. The Small Polaron. Ann. Phys. (N.Y.) 8, 343–389 (1959)

    Article  MATH  Google Scholar 

  5. G. Wellein and H. Fehske, Self-trapping problem of electrons or excitons in one dimension. Phys. Rev. B 58, 6208–6218 (1998)

    Article  Google Scholar 

  6. H. Fehske, M. Holicki, and A. Weiße, Lattice dynamical effects on the Peierls transition in one-dimensional metals and spin chains. Advances in Solid State Physics, 40, 235–249 (2000)

    Google Scholar 

  7. B. Bäuml, G. Wellein, and H. Fehske, Optical absorption and single-particle excitations in the two-dimensional Holstein-tJ model. Phys. Rev. B 58, 3663–3676 (1998).

    Article  Google Scholar 

  8. G. Wellein, H. Röder, and H. Fehske, Polarons and Bipolarons in Strongly Interacting Electron-Phonon Systems. Phys. Rev. B 33, 9666–9675 (1996)

    Article  Google Scholar 

  9. G. Wellein and H. Fehske, Towards the limits of present-day supercomputers: Exact diagonalization of strongly correlated electron-phonon systems. In E. Krause and W. Jäger (Eds.): High Performance Computing in Science and Engineering 1999, 112–129, Springer-Verlag Berlin Heidelberg (2000)

    Google Scholar 

  10. S. R. White, Density Matrix Formulation for Quantum Renormalization Groups. Phys. Rev. Lett. 69, 2863–2866 (1992)

    Article  Google Scholar 

  11. S.R White, Density Matrix Algorithms for Quantum Renormalization Groups. Phys. Rev. B 48, 10345–10356 (1993)

    Article  Google Scholar 

  12. R. M. Noack and S. R. White, The Density Matrix Renormalization Group. In I. Peschel, X. Wang, M. Kaulke and K. Hallberg (Eds): Density-Matrix Renormalization: A New Numerical Method in Physics. Lectures of a seminar and workshop, held at the Max-Planck-Institut für Physik Komplexer Systeme, Dresden, Germany, 1998, Lecture Notes in Physics Vol. 528, Springer, Berlin Heidelberg (1999)

    Google Scholar 

  13. E. Jeckelmann and S. R. White, Density-Matrix Renormalization Group Study of the Polaron Problem in the Holstein Model. Phys. Rev. B 57, 6376–6385 (1998)

    Article  Google Scholar 

  14. G. Hager, E. Jeckelmann, H. Fehske, and G. Wellein, Parallelization Strategies for Density Matrix Renormalization Group Algorithms on Shared-Memory Systems. arXiv:cond-mat/0305463

    Google Scholar 

  15. S. Goedecker and A. Hoisie, Performance Optimization of Numerically Intensive Codes. SIAM, Philadelphia (2001)

    Google Scholar 

  16. E. Jeckelmann, Dynamical density-matrix renormalization-group method. Phys. Rev. B 66, 045114 (2002)

    Google Scholar 

  17. H. Fehske, G. Wellein, A. Weiße, F. Göhmann, H. Büttner, and A. R. Bishop, Peierls insulator Mott-insulator transition in 1D. Physica B 312–313, 562–563 (2002)

    Google Scholar 

  18. H. Fehske, A. P. Kampf, M. Sekania and G. Wellein, Nature of the Peierls-to Mott-insulator transition in 1D. Eur. Phys. J. B 31, 11–16 (2003)

    Article  Google Scholar 

  19. H. Fehske, G. Wellein, A. P. Kampf, M. Sekania, G. Hager, A. Weiße, H. Büttner, and A. R. Bishop, One-dimensional electron-phonon systems: Mott-versus Peierls-insulators. In S. Wagner et al. (Eds.): High Performance Computing in Science and Engineering Munich 2002, 339–349, Springer-Verlag Berlin Heidelberg (2003)

    Google Scholar 

  20. M. Fabrizio, A. O. Gogolin, and A. A. Nersesyan, From Band Insulator to Mott Insulator in One Dimension. Phys. Rev. Lett. 83, 2014–2017 (1999)

    Article  Google Scholar 

  21. Ph. Brune, G. I. Japradize, A. P. Kampf, and M. Sekania, Nature of the insulating phases in the half-filled ionic Hubbard model. arXiv: cond-mat/0304697 (2003)

    Google Scholar 

  22. K. Hallberg, Density-matrix algorithm for the calculation of dynamical properties of low-dimensional systems. Phys. Rev. B 52, R9827–R9830 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hager, G., Jeckelmann, E., Fehske, H., Wellein, G. (2005). Exact Numerical Treatment of Finite Quantum Systems Using Leading-Edge Supercomputers. In: Bock, H.G., Phu, H.X., Kostina, E., Rannacher, R. (eds) Modeling, Simulation and Optimization of Complex Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27170-8_13

Download citation

Publish with us

Policies and ethics