Skip to main content

Part of the book series: Springer Praxis Books ((GEOPHYS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

17.8 References

  • AGS (2000). Landslide risk management concepts and guidelines. Australian Geomechanics, 35(1), 51–92.

    Google Scholar 

  • Bianco, G. and Franzi, L. (2000) Estimation of debris flow volumes from storm events. In: G.F. Wieczorek and N.D. Naeser (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings of 2nd International DFHM Conference, Taipei, Taiwan, August 16–18 (pp. 441–448). A.A.Balkema, Rotterdam.

    Google Scholar 

  • Birkeland, P. (1999) Soils and Geomorphology (448 pp.). Oxford University Press, New York.

    Google Scholar 

  • Bottino, G and Crivellari, R. (1998) Analisi di collate detritiche connesse con l'evento allu-vionale del 5–6 Novembre 1994 nell'anfiteatro morenico de Ivrea. Hydrogeological Risk, Countermeasures and Use of the Canavese Territory: Proceedings National Conference, Ivrea, Italy (pp. 36–46) [in Italian].

    Google Scholar 

  • Boussinesq, J. (1868) Mémoire sur l'influence des frottements dans les movements réguliers des fluides. Journal de Mathématiques Pures et Appliquées, Series 2, 13, 377–424 [in French].

    Google Scholar 

  • Bovis, M.J. and Jakob, M. (1999) The role of debris supply conditions in predicting debris flow activity. Earth Surface Processes and Landforms, 24, 1039–1054.

    Article  Google Scholar 

  • Brardinoni, F. and Church, M. (2004) Representing the landslide magnitude-frequency relation: Capilano River basin, British Columbia. Earth Surface Processes and Landforms, 29(1), 115–124.

    Article  Google Scholar 

  • Brardinoni, F., Hassan, M.A., and Slaymaker, O. (2003) Landslide inventory in a rugged forested watershed: A comparison between air-photo and field survey data. Geomorphology, 54, 179–196.

    Article  Google Scholar 

  • Butler, D. (1979) Snow avalanche path terrain and vegetation, Glacier National Park, Montana. Arctic and Alpine Research, 11(1), 17–32.

    Article  Google Scholar 

  • Carrara, A., Crosta, G., and Frattini, P. (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surface Processes and Landforms, 28, 1125–1142.

    Article  Google Scholar 

  • Cave, P.W. (1992) Natural hazards, risk assessment and landuse planning in British Columbia: Progress and problems. First Canadian Symposium on Geotechnique and Natural Hazards, Vancouver, BC (pp. 1–12). Bitech Publishers.

    Google Scholar 

  • Chow, V.T. (1959) Open Channel Hydraulics (680 pp.). McGraw-Hill, New York.

    Google Scholar 

  • Costa (1988) Floods from dam failures. In: V.R. Baker and P.C. Patton (eds), Flood Geomorphology (pp. 439–463). John Wiley & Sons, New York.

    Google Scholar 

  • d’Agostino, V., Cerato, M., and Coali, R. (1996) Il trasporto solido di event estremi nei torrenti del trentino orientale. Proceedings International Symposium “Interpraevent”, Garmisch-Partenkirchen, Germany (Vol. I, pp. 377–386). International Forschungs-gesellschaft Interpraevent, Klagenfurt, Austria.

    Google Scholar 

  • Dai, F.C. and Lee, C.F. (2001) Frequency-volume relation and prediction of rainfall-induced landslides. Engineering Geology, 59, 253–266.

    Article  Google Scholar 

  • Decaulne, A. and Saemundsson, T. (2003) Debris-flow characteristics in the Gleidarhjalli area, northwestern Iceland. Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings of 3rd International DFHM conference, Davos, Switzerland (pp. 1107–1128). Millpress, Rotterdam.

    Google Scholar 

  • Einstein, H.H. and Karam, K.S. (2001) Risk assessment and uncertainties. In: M. Kühne, H.H. Einstein, H. Krauter, H. Klapperich, and R. Pöttler (eds), Proceedings of the International Conference on Landslides, Davos (pp. 457–488). Verlag Glickauf, Essen, Germany.

    Google Scholar 

  • Ekes, C. and Friele, P.A. (2003) Sedimentary architecture and post-glacial evolution of Cheekye fan, southwestern British Columbia, Canada. In: C.S. Bristow and H.M. Jol (eds), Ground Penetrating Radar in Sediments (Special Publication 211, pp. 87–98). Geological Society of London.

    Google Scholar 

  • Fell, R. (1994) Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal, 31, 261–272.

    Article  Google Scholar 

  • Fiebiger, G. (1997) Zonage des risques naturels en Autriche [Natural hazard risk zoning in Austria]. France-Autriche conféerence en restauration du terrain en montagne Grenoble, France. Translated in Journal of Torrent, Avalanche, Landslide and Rockfall Engineering, 134(61).

    Google Scholar 

  • Griffith, P.G., Webb, R.H., and Melis, T.S. (1996) Initiation and Frequency of Debris Flows in Grand Canyon, Arizona (USGS Open-file report 96-491). US Geological Survey, Reston, VA.

    Google Scholar 

  • Griswold, J.P. (2004) Mobility statistics and hazard mapping for non-volcanic debris flows and rock avalanches. Master thesis, Portland State University, OR.

    Google Scholar 

  • Hovius, N., Stark, C.P., Chu, H.-T., and Lin, J.-C. (2000) Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. Journal of Geology, 108, 73–89.

    Article  Google Scholar 

  • Hungr, O. (1997) Some methods of landslide hazard intensity mapping (Invited paper). In: R. Fell and D.M. Cruden (eds), Proceedings of Landslide Risk Workshop (pp. 215–226). A.A. Balkema, Rotterdam.

    Google Scholar 

  • Hungr, O. (2002) Hazard and risk assessment in the runout zone of rapid landslides (Keynote paper). Natural Terrain Hazards, a Constraint to Development? Proceedings, Annual Meeting of the Institution of Mining and Metallurgy, Hong Kong (pp. 10–25). Institution of Mining and Metallurgy, Hong Kong.

    Google Scholar 

  • Hungr, O., Morgan, G.C., and Kellerhals, R. (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Canadian Geotechnical Journal, 21, 663–677.

    Google Scholar 

  • Hampel, R. (1977) Geschiebewirtschaft in Wildbächen. Wildbach-und Lawinenverbau, 41(1), 3–34.

    Google Scholar 

  • Hereford, R., Thomson, K.S., Burke, K.J., and Fairley, H.C. (1996) Tributary debris fans and the late Holocene alluvial chronology of the Colorado River, eastern Grand Canyon, Arizona. Geological Society of America Bulletin, 108, 3–19.

    Article  Google Scholar 

  • Hupp, C.R. (1984) Dendrogeomorphic evidence of debris flow frequency and magnitude at Mount Shasta, California. Environment Geology and Water Sciences, 6(2), 121–128.

    Article  Google Scholar 

  • Hupp, C.R., Ostercamp, W.R., and Thornton, J.L. (1987) Dendrogeomorphic Evidence and Dating of Recent Debris Flows on Mount Shasta, Northern California (USGS Professional Paper 1396-B, 39 pp.). US Geological Survey, Reston, VA.

    Google Scholar 

  • Ikeya, H. (1981) A method of designation for area in danger of debris flow. In: Erosion and Sediment Transport in Pacific Rim Steeplands (pp. 576–587). International Association of Hydrological Sciences, Christchurch, New Zealand.

    Google Scholar 

  • Ikeya, H. and Mizuyama, T. (1982) Flow and Deposit Properties of Debris Flows (Report 157-2, pp. 88–153). Public Works Research Institute, Tsukuba, Japan [in Japanese].

    Google Scholar 

  • Innes, J.L. (1985) Magnitude-frequency relations of debris flows in northwest Europe. Geografiska Annaler, 67A(1/2), 23–32.

    Article  Google Scholar 

  • IUGS Working Group on Landslides, Committee on Risk Assessment (1997) Quantitative risk assessment for slopes and landslides: The state of the art. In: D.M. Cruden and R. Fell (eds), Proceedings of the International Workshop on Landslide Risk Assessment, Honolulu (pp. 3–12). A.A. Balkema, Rotterdam.

    Google Scholar 

  • Iverson, R.M., LaHusen, R.G., Major, J.J., and Zimmerman, C.L. (1994) Debris flow against obstacles and bends: Dynamics and deposits (Abstract). Eos, 75(44), 274.

    Google Scholar 

  • Iverson, R.M., Schilling, S.P., and Vallance, J.W. (1998) Objective delineation of laharinundation hazard zones. Geological Society of America Bulletin, 110(8), 972–984.

    Article  Google Scholar 

  • Jackson, L.E. (1977) Dating and Recurrence Frequency of Prehistoric Mudflows near Big Sur, Monterey County, California (USGS Professional Paper 1250, pp. 461–478). US Geological Survey, Reston, VA.

    Google Scholar 

  • Jackson, L.E., Kostachuk, R.A., and MacDonald, G.M. (1987) Identification of debris flow hazard on alluvial fans in the Canadian Rocky Mountains. In: J.E. Costa and G.F. Wieczorek (eds), Debris Flows/Avalanches: Process, Recognition, and Mitigation (Reviews in Engineering Geology No. VII). Geological Society of America, Boulder, CO.

    Google Scholar 

  • Jakob, M. (1996) Morphometric and geotechnical controls of debris flow frequency and magnitude in southwestern British Columbia. Ph.D. thesis, University of British Columbia.

    Google Scholar 

  • Jakob, M. (in press) A debris flow size classification. Engineering Geology.

    Google Scholar 

  • Jakob, M. and Bovis, M.J. (1996) Morphometric and geotechnical controls of debris flow activity, southern Coast Mountains, British Columbia, Canada. Zeitschrift für Geomorphologie, Suppl., 104, 13–26.

    Google Scholar 

  • Jakob, M. and Friele, P. (in press) A 200-year history of debris flows at Cheekye River, British Columbia. Canadian Journal of Earth Sciences.

    Google Scholar 

  • Jakob, M. and Jordan, P. (2001) Design flood estimates in mountain streams. Canadian Journal of Civil Engineering, 28(3), 425–439.

    Article  Google Scholar 

  • Jakob, M. and Podor, A. (1995) Frequency and magnitude of debris flows. 48th Canadian Geotechnical Conference, September 25–27, Vancouver, British Columbia (pp. 491–498). Canadian Geotechnical Society, Vancouver.

    Google Scholar 

  • Jakob, M., Hungr, O. and Thomson, B. (1997) Two debris flows with anomalously high magnitude. In: C-L. Chen (ed.), Debris-flow Hazards Mitigation: Mechanics, Prediction and Assessment: Proceedings of the 1st International Conference, American Society of Civil Engineers (pp. 382–394). American Society of Civil Engineers, New York.

    Google Scholar 

  • Jakob, M., Weatherly, H., and Pittman, P. (2003) 7000 years of debris flow history at Jones Creek, Whatcom County, USA. Geological Society of America Annual Conference, Seattle, November 2–5 (Program and Abstracts). Geological Society of America, Boulder, CO.

    Google Scholar 

  • Jakob, M., Bovis, M.J., and Oden, M. (in press) Estimating debris flow magnitude and frequency from channel recharge rates. Earth Surface Processes and Landforms.

    Google Scholar 

  • Jan, C.D., Lee, M.H., and Chen, J.C. (2003) Reliability analysis of design discharge of debris flow. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction and Assessment (pp. 1163–1171). Millpress, Rotterdam.

    Google Scholar 

  • Jitousono, T., Shimokawa, E., and Tsuchiqa, S. (1996). Debris flow following the 1994 eruption with pyroclastic flows in Merapi volcano, Indonesia. Journal of the Japanese Society of Erosion Control Engineering, 48, 109–116.

    Google Scholar 

  • Johnson, P.A., McCuen, R.H., and Hromadka, T.V. (1991) Magnitude and frequency of debris flows. Journal of Hydrology, 123, 69–82.

    Article  Google Scholar 

  • Jordan, P.R. (1994) Debris flows in the southern Coast Mountains, British Columbia: Dynamic behaviour and physical properties (258 pp.). Ph.D. thesis, University of British Columbia, Vancouver.

    Google Scholar 

  • Kronfellner-Kraus, G. (1983) Torrect erosion and its control in Europe and some research activities in this field in Austria. SABO The Erosion Control Engineering Society, Japan, 3(126), 33–44.

    Google Scholar 

  • KWL Ltd (2003) Debris Flow Study and Risk Mitigation Alternatives for Percy Creek and Vapour Creek (Final report, December). District of North Vancouver.

    Google Scholar 

  • Marchi, L. and Tecca, P.R. (1996) Magnitudo delle collate detritiche nelle Alpi Orientali Italiane. Geoingegneria Ambientale e Mineraria, 33(2/3), 79–86.

    Google Scholar 

  • Melis, T.S., Webb, R.H., Griffith, P.G., and Wise, T.J. (1994) Magnitude and Frequency Data for Historic Debris Flows in Grand Canyon National Park and Vicinity, Arizona (USGS Water Resources Investigations Report 94-4214, 285 pp.). US Geological Survey, Reston, VA.

    Google Scholar 

  • Mizuyama, T. (1982) Analysis of sediment yield and transport data for erosion control works. In: Recent Developments in the Explanation and Prediction of Erosion and Sediment Yield: Proceedings of the Exeter Symposium (No. 137, pp. 177–182). International Association of Hydraulics Research.

    Google Scholar 

  • Mizuyama, T., Kobashi, S., and Ou, G. (1992) Prediction of debris flow peak discharge, Proceedings of the International Symposium “Interpraevent”, Bern, Switzerland (Vol. 4, 99–108). International Forschungsgesellschaft Interpraevent, Klagenfurt, Austria.

    Google Scholar 

  • NRC (1994) Science and Judgment in Risk Assessment. National Research Council and National Academy Press, Washington, DC.

    Google Scholar 

  • O'Brien, J.S., Julien, P.Y., and Fullerton, W.T. (1993) Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, 119(2), 244–261.

    Article  Google Scholar 

  • Okubo, S. and Mizuyama, T. (1981) Planning countermeasures against debris flow. Civil Engineering Journal, 23(9) [in Japanese].

    Google Scholar 

  • Pelletier, J.D., Malamud, B.D., Blodgett, T.A., and Turcotte, D.L. (1997) Scale-invariance of soil moisture variability and its implications for the frequency-size distribution of landslides. Engineering Geology, 48, 254–268.

    Article  Google Scholar 

  • Petracheck, A. and Kienholz, H. (2003) Hazard assessment and mapping of mountain risks in Siwtzerland. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment (pp. 23–38). Millpress, Rotterdam.

    Google Scholar 

  • Pyles, M.R. and Froehlich, H.A. (1987) Discussion of “Rates of landsliding as impacted by timber management activities in north-western California” by M. Wolfe and J. Williams. Bulletin of the Association of Engineering Geologists, 24(3), 425–431.

    Google Scholar 

  • Rickenmann, D. (1999) Empirical relationships for debris flows. Natural Hazards, 19, 47–77.

    Article  Google Scholar 

  • Scheuringer, E. (1998) Grundlagen und Grundsätze der Gefahrenzonenausweisung der Wildbach-und Lawinenverbauung. Der Alm-und Bergbauer, 48, 58–61.

    Google Scholar 

  • Scott, K.M. (2000) Precipitation-triggered debris flow at Casita Volcano, Nicaragua: Implications for mitigation strategies in volcanic and tectonically active steeplands. In: G.F. Wieczorek and N.D. Naeser(eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment (pp. 3–14). A.A. Balkema, Rotterdam.

    Google Scholar 

  • Scott, K.M. and Vallance, J.W. (1995) Debris Flow, Debris Avalanche, and Flood Hazards at and Downstream from Mount Rainier, Washington (USGS Hydrologic Investigations Atlas 729: 2 sheets and accompanying pamphlet). US Geological Survey, Reston, VA.

    Google Scholar 

  • Scott, K. and Yuyi, W. (2003) Debris Flows — Geological Process and Hazard — Illustrated by a Surge Sequence at Jianglia Ravine, Yunnan, China (USGS Professional Paper 1671). US Geological Survey, Reston, VA.

    Google Scholar 

  • Shroeder, J.F. (1978) Dendrogeomorphological analysis of movement of Table Cliffs Plateau, Utah. Quaternary Research, 9, 168–185.

    Article  Google Scholar 

  • Sigafoss, R.S. (1964) Botanical Evidence of Floods and Flood-plain Position (USGS Professional Paper 485-A). US Geological Survey, Reston, VA.

    Google Scholar 

  • Southwood, T.R.E. (1985) The roles of proof and concern in the work of the Royal Commission on Environmental Pollution. Marine Pollution Bulletin, 16, 346–350.

    Article  Google Scholar 

  • Stark, C.P. and Hovis, N. (2001) The characterization of landslide size distributions. Geophysical Research Letters, 28(6), 1091 1094.

    Article  Google Scholar 

  • Straub, L.G., Silberman, E., and Nelson, H.C. (1958) Open channel flow at small Reynolds numbers. Transactions of the American Society of Civil Engineers, 123, 685–706.

    Google Scholar 

  • Stiny, J. (1910) Die Muren (106 pp.). Verlag der Wagner’schen Buchhandlung.

    Google Scholar 

  • Strunk, H. (1995) Dendrogeomorphologische Methoden zur Ermittlung der Murfrequenz und Beispiele ihrer Anwendung (195 pp.). Roderer, Regensburg, Germany.

    Google Scholar 

  • Takahashi, T. (1978) Mechanical characteristics of debris flow. Journal of the Hydraulics Division ASCE, HY8, 1153–1169.

    Google Scholar 

  • Takahashi, T. (1981) Estimation of potential debris flows and their hazardous zones: Soft countermeasures for a disaster. Journal of Natural Disaster Science, 3, 57–89.

    Google Scholar 

  • Takahashi, T. (1991) Debris Flow (IAHR Monograph Series). International Association for Hydraulic Research, Ecole Polytechnique Fédérale, Lausanne, Switzerland and A.A. Balkema, Rotterdam.

    Google Scholar 

  • Takei, A. (1984) Interdependence of sediment budget between individual torrents and a river-system. Proceedings International Symposium “Interpraevent”, Villach, Austria (Vol. I, pp. 35–48). International Forschungsgesellschaft Interpraevent, Klagenfurt, Austria.

    Google Scholar 

  • Vallance, J.W. and Scott, K.M. (1997) The Osceola Mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow. Geological Society of America Bulletin, 109, 143–163.

    Article  Google Scholar 

  • VanDine, D.F. (1985) Debris flow and debris torrents in the Southern Canadian Cordillera. Canadian Geotechnical Journal, 22, 44–68.

    Google Scholar 

  • Watanabe, M. (1981) Debris flows and associated disasters. Civil Engineering Journal, 23(6) [in Japanese].

    Google Scholar 

  • Webb, R.H., Pringle, P.T., and Rink, G.R. (1989) Debris Flows from Tributaries of the Colorado River, Grand Canyon National Park, Arizona (USGS Professional Paper 1492, 39 pp.). US Geological Survey, Reston, VA.

    Google Scholar 

  • Webb, R.H., Melis, T.S., Wise, T.W., and Elliott, J.G. (1996) The Great Cataract: The Effects of Late Holocene Debris Flows on Lava Falls Rapid, Grand Canyon National Park, Arizona (USGS Open-File Report 96-460, 96 pp.). US Geological Survey, Reston, VA.

    Google Scholar 

  • Whitman, R.V. (2000) Organizing and evaluating uncertainty in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 126(7), 583–593.

    Article  Google Scholar 

  • Wigmosta, M.S. (1983) Rheology and flow dynamics of the Toutle debris flows from Mt. St. Helens (184 pp.). M.Sc. thesis, University of Washington, Seattle.

    Google Scholar 

  • Wilford, D.J., Sakals, M.E., Innes, J.L., Sidle, R.C., and Bergerud, W.A. (2004) Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides, 1, 61–66.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Praxis. Springer Berlin Heidelberg

About this chapter

Cite this chapter

Jakob, M. (2005). Debris-flow hazard analysis. In: Debris-flow Hazards and Related Phenomena. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27129-5_17

Download citation

Publish with us

Policies and ethics