Skip to main content

Part of the book series: Springer Praxis Books ((GEOPHYS))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

13.7 References

  • Ayotte, D. and Hungr, O. (2000) Calibration of a runout prediction model for debris flows and avalanches. In: G.F. Wieczorek and N.D. Naeser (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 2nd International Conference, Taipei, Taiwan (pp. 505–514). A.A. Balkema, Rotterdam.

    Google Scholar 

  • Bathurst, J.C., Burton A., and Ward, T.J. (1997) Debris flow run-out and landslide sediment delivery model tests. Journal of Hydraulic Engineering, 123(5), 410–419.

    Article  Google Scholar 

  • Benda, L.E. and Cundy, T.W. (1990) Predicting deposition of debris flows in mountain channels. Canadian Geotechnical Journal, 27, 409–417.

    Google Scholar 

  • Cannon, S.H. (1989) An approach for estimating debris flow runout distances. In: Proceedings Conference XX, International Erosion Control Association, Vancouver, British Columbia (pp. 457–468).

    Google Scholar 

  • Cannon, S.H. (1993) An empirical model for the volume-change behavior of debris flows. In: H.W. Shen, S.T. Su, and F. Wen (eds), Hydraulic Engineering '93 (Vol. 2, pp. 1768–1773). American Society of Civil Engineers, New York.

    Google Scholar 

  • Corominas, J. (1996) The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 33, 260–271.

    Google Scholar 

  • Crosta, G.B., Cucchiaro, S., and Frattini, P. (2003) Validation of semi-empirical relationships for the definition of debris-flow behavior in granular materials. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 821–831). Millpress, Rotterdam.

    Google Scholar 

  • Denlinger, R.P. and Iverson, R.M. (2001) Flow of variably fluidized granular masses across three-dimensional terrain. 2: Numerical predictions and experimental tests. Journal of Geophysical Research, 106(B1), 537–552.

    Article  Google Scholar 

  • Fannin, R.J. and Wise, M.P. (2001) An empirical-statistical model for debris flow travel distance. Canadian Geotechnical Journal, 38, 982–994.

    Article  Google Scholar 

  • Fraccarollo, L. and Papa, M. (2000) Numerical simulation of real debris-flow events. Physics and Chemistry of the Earth, B, 25(9), 757–763.

    Google Scholar 

  • Gamma, P. (2000) dfwalk—Ein Murgangsimulationprogramm zur Gefahrenzonierung (Geographica Bernensia, G66, 144 pp.). Geographisches Institut der Universität Bern [in German].

    Google Scholar 

  • Genolet, F. (2002) Modélisation de laves torrentielles: Contribution à la paramétrisation du modèle Voellmy-Perla (70 pp. +annexes). Postgraduate thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland [in French].

    Google Scholar 

  • Ghilardi, P., Natale, L., and Savi, F. (2003) Experimental investigation and mathematical simulation of debris-flow runout distance and deposition area. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 601–610). Millpress, Rotterdam.

    Google Scholar 

  • Han, G. and Wang, D. (1996) Numerical modeling of Anhui debris flow. Journal of Hydraulic Engineering, 122(5), 262–265.

    Article  Google Scholar 

  • Hofmeister, R.J. and Miller, D.J. (2003) GIS-based modeling of debris-flow initiation, transport and deposition zones for regional hazard assessments in western Oregon, USA. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 1141–1149. Millpress, Rotterdam.

    Google Scholar 

  • Hungr, O. (1992) Runout prediction for flow-slides and avalanches: Analytical methods. In: Proceedings of the Geotechnical and Natural Hazards Symposium, Vancouver, British Columbia (pp. 139–144). Vancouver Geotechnical Society/Canadian Geotechnical Society and Bitech Publishers, Richmond, Canada.

    Google Scholar 

  • Hungr, O. (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32, 610–623.

    Article  Google Scholar 

  • Hungr, O., Morgan, G.C. and Kellerhals, R. (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Canadian Geotechnical Journal, 21, 663–677.

    Google Scholar 

  • Hungr, O., Morgan, G.C., VanDine, D.F., and Lister, D.R. (1987) Debris flow defences in British Columbia. In: J.E. Costa and G.F. Wieczorek (eds), Debris Flow: Process, Description and Mitigation (GSA Reviews in Engineering Geology, Vol. 7, pp. 201–222). Geological Society of America, Boulder, CO.

    Google Scholar 

  • Ikeya, H. (1979) Introduction to Sabo Works: The Preservation of Land against Sediment Disaster (first English edn, 168 pp.). The Japan Sabo Association, Tokyo.

    Google Scholar 

  • Ikeya, H. (1981) A method of designation for area in danger of debris flow. Erosion and Sediment Transport in Pacific Rim Steeplands (IAHS Publ. No. 132). International Association of Hydrological Sciences, Christchurch, New Zealand.

    Google Scholar 

  • Ikeya, H. (1989) Debris flow and its countermeasures in Japan. Bulletin International Association of Engineering Geologists, 40, 15–33.

    Article  Google Scholar 

  • Imran, J., Parker, G., Locat, J., and Lee, H. (2001) 1D Numerical model of muddy sub-aqueous and subaerial debris flows. Journal of Hydraulic Engineering, 127(11), 959–967.

    Article  Google Scholar 

  • Iverson, R.M. (1997) The physics of debris flows. Review of Geophysics, 35(3), 245–296.

    Article  Google Scholar 

  • Iverson, R.M. and Denlinger, R.P. (2001) Flow of variably fluidized granular masses across three-dimensional terrain. 1: Coulomb mixture theory. Journal of Geophysical Research, 106 (B1), 537–552.

    Article  Google Scholar 

  • Iverson, R.M., Schilling, S.P., and Vallance, J.W. (1998) Objective delineation of lahar-inundation zones. Geological Society of America Bulletin, 110(8), 972–984.

    Article  Google Scholar 

  • Jakob, M. and Bovis, M.J. (1996) Morphometric and geotechnical controls of debris flow activity, southern Coast Mountains, British Columbia. Zeitschrift für Geomorphologie, Supplement Band 104, 13–26.

    Google Scholar 

  • Jin, M. and Fread, D.L. (1999) 1D modeling of mud/debris unsteady flows. Journal of Hydraulic Engineering, 125(8), 827–834.

    Article  Google Scholar 

  • Jordan, R.P. (1994) Debris flows in the southern Coast Mountains, British Columbia: Dynamic behaviour and physical properties. Ph.D. thesis, University of British Columbia, Vancouver.

    Google Scholar 

  • Körner, H.J. (1980) Modelle zur Berechnung der Bergsturz-und Lawinenberechnung. Internationales Symposium “Interpraevent”, Bad Ischl, Austria (Tagungspublikation, Band 2, pp. 15–55). International Forschungsgesellschaft Interpraevent, Klagenfurt, Austria [in German].

    Google Scholar 

  • Laigle, D., Hector, A.F., Hiibl, J., and Rickenmann, D. (2003) Comparison of numerical simulation of muddy debris flow spreading to records of real events. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 635–646). Millpress, Rotterdam.

    Google Scholar 

  • Lancaster, S.T., Hayes, S.K., and Grant, G.E. (2003) Effects of wood on debris flow runout in small mountain watersheds. Water Resources Research, 39(6), 1168, doi:10.1029/2001WR001227, 21 pp.

    Article  Google Scholar 

  • Legros, F. (2002) The mobility of long-runout landslides. Engineering Geology, 63, 301–331.

    Article  Google Scholar 

  • McArdell, B.W., Zanuttigh, B., Lamberti, A., and Rickenmann, D. (2003) Systematic comparison of debris flow laws at the Illgraben torrent, Switzerland. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 647–657). Millpress, Rotterdam.

    Google Scholar 

  • McDougall, S.D. and Hungr, O. (2003) Objectives for the development of an integrated three-dimensional continuum model for the analysis of landslide runout. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 481–490). Millpress, Rotterdam.

    Google Scholar 

  • Mizuyama, T., Kobashi, S., and Ou, G. (1992) Prediction of debris flow peak discharge. Internationales Symposium (Tagungspublikation, Band 4, pp. 99–108). Interpraevent, Bern.

    Google Scholar 

  • Moriwaki, H., Yazaki, S., and Oyagi, N. (1985) A gigantic debris avalanche and its dynamics at Mount Ontake caused by the Naganoken-Seibu earthquake, 1984. In: Proceedings 4th International Conference and Field Workshop on Landslides, 1985, Tokyo (pp. 359–362).

    Google Scholar 

  • Nakagawa, H., Takahashi, T., and Satofuka, Y. (2000) A debris-flow disaster on the fan of the Harihara River, Japan. In: G.F. Wieczorek and N.D. Naeser (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 2nd International Conference, Taipei, Taiwan (pp. 193–201). A.A. Balkema, Rotterdam.

    Google Scholar 

  • O'Brien, J.S., Julien, P.Y., and Fullerton, W.T. (1993) Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering, 119(2), 244–261.

    Article  Google Scholar 

  • Okuda, S. and Suwa, H. (1984) Some relationships between debris flow motion and microtopography for the Kamikamihori fan, North Japan Alps. In: T.P. Burt and D.E. Walling (eds), Catchment Experiments in Fluvial Geomorphology (pp. 447–464). Geo Books, Norwich, UK.

    Google Scholar 

  • Ouchi, S. and Mizuyama, T. (1989) Volume and movement of Tombi landslide in 1858, Japan. Transactions of the Japanese Geopmorphological Union, 10(1), 27–51.

    Google Scholar 

  • Perla, R., Cheng, T.T., and McClung, D.M. (1980) A two parameter model of snow avalanche motion. Journal of Glaciology, 26(94), 197–208.

    Google Scholar 

  • Petrascheck, A. and Kienholz, H. (2003) Hazard assessment and mapping of mountain risks in Switzerland. In: D. Rickenmann and C-L. Chen (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 3rd International DFHM Conference, Davos, Switzerland (pp. 25–38). Millpress, Rotterdam.

    Google Scholar 

  • Pierson, T.C. (1995) Flow characteristics of large eruption-triggered debris flows at snow-clad volcanoes: Constraints for debris-flow models. Journal of Volcanology and Geothermal Research, 66, 283–294.

    Article  Google Scholar 

  • Rickenmann, D. (1990) Debris Flows 1987 in Switzerland: Modelling and Sediment Transport (IAHS Publ. No. 194, pp. 371–378). International Association of Hydrological Sciences, Christchurch, New Zealand.

    Google Scholar 

  • Rickenmann, D. (1999) Empirical relationships for debris flows. Natural Hazards, 19, 47–77.

    Article  Google Scholar 

  • Rickenmann, D. and Koch, T. (1997) Comparison of debris flow modelling approaches. In: C-L. Chen (ed.), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 1st International DFHM Conference, San Francisco, CA (pp. 576–585). American Society of Civil Engineers, New York.

    Google Scholar 

  • Rickenmann, D. and Weber, D. (2000) Flow resistance of natural and experimental debris flows in torrent channels. In: G.F. Wieczorek and N.D. Naeser (eds), Debris-flow Hazards Mitigation: Mechanics, Prediction, and Assessment: Proceedings 2nd International Conference, Taipei, Taiwan (pp. 245–254). A.A. Balkema, Rotterdam.

    Google Scholar 

  • Rickenmann, D. and Zimmermann, M. (1993) The 1987 debris flows in Switzerland: Documentation and analysis. Geomorphology, 8, 175–189.

    Article  Google Scholar 

  • Rickenmann, D., Laigle, D., Lamberti, A., Zanuttigh, B., Armanini, A., Fraccarollo, L., Giuliani, M., Rosati, G., McArdell, B.W., Ng, D., Swartz, M., and Graf, Ch. (2003) Evaluation of Existing Numerical Simulation Models for Debris Flows (Report on work package 3 of the research project THARMIT of the European Union, EU Contract EVG1-CT-1999-00012). EU, Brussels.

    Google Scholar 

  • Sassa, K. (1988) Geotechnical model for the motion of landslides (Special lecture). In: C. Bonnard (ed.), Proceedings 5th International Symposium on Landslides (Vol. 1, pp. 37–55). A.A. Balkema, Rotterdam.

    Google Scholar 

  • Salm, B. (1966) Contribution to avalanche dynamics. Proceedings International Symposium on Scientific Aspects of Snow and Ice Avalanches, Christchurch, New Zealand (IAHS Publ. No. 69, pp. 199–214). International Association of Hydrological Sciences, Christchurch, New Zealand.

    Google Scholar 

  • Savage, S.B. and Hutter, K. (1989) The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177–215.

    Article  Google Scholar 

  • Scheidegger, A.E. (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics, 5, 231–236.

    Article  Google Scholar 

  • Scott, K.M., Pringle, P.T., and Vallance, J.W. (1992) Sedimentology, Behavior, and Hazards of Debris Flows at Mount Rainier, Washington (USGS Open-file Report 90-385, 106 pp.). US Geological Survey, Reston, VA.

    Google Scholar 

  • Takahashi, T. (1991) Debris Flow (IAHR Monograph Series, 165 pp.). International Association for Hydraulic Research, Ecole Polytechnique Fédérale, Lausanne, Switzerland and A.A. Balkema, Rotterdam.

    Google Scholar 

  • Takahashi, T., Nakagawa, H., Harada, T., and Yamashiki, Y. (1992) Routing debris flows with particle segregation. Journal of Hydraulic Engineering, 118(11), 1490–1507.

    Article  Google Scholar 

  • VanDine, D.F. (1996) Debris Flow Control Structures for Forest Engineering (Ministry of Forests Research Program, Working Paper 22/1996, 75 pp.). Government of the Province of British Columbia, Vancouver.

    Google Scholar 

  • Van Gassen, W. and Cruden, D.M. (1989) Momentum transfer and friction in the debris of rock avalanches. Canadian Geotechnical Journal, 26, 623–628.

    Article  Google Scholar 

  • VAW (1992) Murgänge 1987: Dokumentation und Analyse (unpublished report, No. 97.6, 620 pp.). Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, Zurich [in German].

    Google Scholar 

  • Voellmy, A. (1955) Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung, 73(12), 159–162, (15), 212–217, (17), 246–249, (19), 280–285 [in German].

    Google Scholar 

  • Voight, B. and Sousa, J. (1994) Lessons from Ontake-san: A comparative analysis of debris avalanche dynamics. Engineering Geology, 38, 261–297.

    Article  Google Scholar 

  • Wise, M.P. (1997) Probabilistic modelling of debris flow travel distance using empirical volumetric relationships. M.Sc. thesis, University of British Columbia, Vancouver.

    Google Scholar 

  • Zimmermann, M., Mani, P., Gamma, P., Gsteiger, P., Heiniger, O., and Hunziker, G. (1997) Murganggefahr und Klimadnderung: ein GIS-basierter Ansatz. (Schlussbericht NFP 31, 161 pp.). ETH, Zurich [in German].

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Praxis. Springer Berlin Heidelberg

About this chapter

Cite this chapter

Rickenmann, D. (2005). Runout prediction methods. In: Debris-flow Hazards and Related Phenomena. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27129-5_13

Download citation

Publish with us

Policies and ethics