Skip to main content

Reproducing Kernel Element Interpolation: Globally Conforming I m/C n/P k Hierarchies

  • Conference paper
Meshfree Methods for Partial Differential Equations II

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 43))

  • 1199 Accesses

Abstract

In this work, arbitrarily smooth, globally compatible, I m/C n/P k interpolation hierarchies are constructed in the framework of reproducing kernel element method (RKEM) for multi-dimensional domains. This is the first interpolation hierarchical structure that has been ever constructed with both minimal degrees of freedom and higher order continuity and reproducing conditions over multi-dimensional domains. The proposed hierarchical structure possesses the generalized Kronecker property, i.e., α Ψ I/(β)/∂x α(x J) = δ IJ δ αβ, |α|, |β| ≤ m. The newly constructed globally conforming interpolant is a hybrid of global partition polynomials (C∞) and a smooth (C n) compactly supported meshfree partition of unity. Examples of compatible RKEM hierarchical interpolations are illustrated, and they are used in a Galerkin procedure to solve differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argyris, J. H., Fried, I. and Scharpf, D. W.: The TUBA family of plate elements for the matrix displacement method. The Aeronautical of the Royal Aeronautical Society, 72, 701–709 (1968).

    Google Scholar 

  2. Barnhill, R. E., Birkhoff, G., and Gordon, W.J.: Smooth interpolation in triangles. Journal of Approximation Theory, 8, 114–128 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bazeley, G.P., Cheung, Y. K., Irons, B. M. and Zienkiewicz, O. C.: Triangle elements in bending: conforming and nonconforming solutions. Proc. 1st Conference on matrix methods in structural mechanics, Wright-Patterson, AFB, Ohio (1965)

    Google Scholar 

  4. Bell, K.: A refined triangular plate bending finite element. International Journal for Numerical Methods in Engineering, 1, 101–122 (1969)

    Article  Google Scholar 

  5. Belytschko, T., Lu, Y. Y. and Gu, L.: Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37, 229–256 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Birkhoff, G. and de Boor, C.: Piecewise polynomial interpolation and approximation, in Approximation of functions, edited by Garabedian, H. L. Elsevier, New York (1965)

    Google Scholar 

  7. Birkhoff, G., Schultz, M. H. and Varga, R. S.: Piecewise Hermite interpolation in one and two variables with applications to partial differential equations, Numer. Math, 11, 232–256 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  8. Clough, R. W. and Tocher, J.: Finite element stiffness matrices for the analysis of plate bending: Proc. 1st Conference on matrix methods in structural mechanics, Wright-Patterson, AFB, Ohio (1965)

    Google Scholar 

  9. de Veubeke, Fraeijs, B.: Bending and stretching of plates — special models for upper and lower bounds: Proc. 1st Conference on matrix methods in structural mechanics, Wright-Patterson, AFB, Ohio (1965)

    Google Scholar 

  10. de Veubeke, Fraeijs, B.: A conforming finite element for plate bending, International Journal of Solids and Structures, 4, 95–108 (1968)

    Article  Google Scholar 

  11. Felippa, C. and Clough, R. W.: The finite element in solid mechanics: in SIAM-AMS Proceedings, 2, 210–252, Amer. Math. Soc. Providence, RI (1970)

    Google Scholar 

  12. Hughes, T. J. R.: The Finite Element Method, Prentice Hall Inc., Englewood Cliffs, New Jersey (1987)

    MATH  Google Scholar 

  13. Irons, B. M.: A conforming quartic triangular element for plate bending. International Journal for Numerical Methods in Engineering, 1, 29–45 (1969)

    Article  MATH  Google Scholar 

  14. Irons, B. M. and Razzaque, A.: Experience with the patch test for convergence of finite element methods. In Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Edited by Aziz, A. K. Academic Press. pages 557–587 (1972).

    Google Scholar 

  15. Li, S. and Liu, W. K.: Meshfree and particle methods and their applications. Applied Mechanics Review, 55, 1–34 (2002).

    Article  Google Scholar 

  16. Li, S., Lu, H., Han, W., Liu, W. K., and Simkins, Jr. D. C.: Reproducing kernel element, Part II. Globally conforming I m /C n hierarchies. Computer Methods in Applied Mechanics and Engineering, 193, 953–987, (2004).

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, W. K., Zhang, Y. and Ramirez, M. R.: Multiple scale finite element methods: International Journal for Numerical Methods in Engineering, 32, 969–990 (1991)

    Article  MATH  Google Scholar 

  18. Liu, W. K., Han, W., Lu, H., Li, S., and Cao, J.: Reproducing kernel element method: Part I. Theoretical formulation. Computer Methods in Applied Mechanics and Engineering, 193, 933–951.

    Google Scholar 

  19. Liu, W. K., Jun, S., Li, S., Adee, J. and Belytschko, T.: Reproducing kernel particle methods for structural dynamics: International Journal for Numerical Methods in Engineering, 38, 1655–1679 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, W.K., Jun, S. and Zhang, Y. F.: Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 20, 1081–1106 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, W. K., Li, S. and Belytschko, T.: Moving least square reproducing kernel method Part I: Methodology and convergence. Computer Methods in Applied Mechanics and Engineering, 143, 422–453 (1997)

    Article  MathSciNet  Google Scholar 

  22. Timoshenko, S. P. and Woinowsky-Krieger, S.: Theory of Plates and Shells, McGRAW-HILL, New York, Secomd Edition, (1959)

    MATH  Google Scholar 

  23. Ugural, A. C.: Stresses In Plates And Shells, Second Edition, McGraw-Hill, Boston (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, S., Simkins, D.C., Lu, H., Liu, W.K. (2005). Reproducing Kernel Element Interpolation: Globally Conforming I m/C n/P k Hierarchies. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations II. Lecture Notes in Computational Science and Engineering, vol 43. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-27099-X_7

Download citation

Publish with us

Policies and ethics