Skip to main content

Enriched Reproducing Kernel Approximation: Reproducing Functions with Discontinuous Derivatives

  • Conference paper
Meshfree Methods for Partial Differential Equations II

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 43))

Abstract

In this paper we propose a new approximation technique within the context of meshless methods able to reproduce functions with discontinuous derivatives. This approach involves some concepts of the reproducing kernel particle method (RKPM), which have been extended in order to reproduce functions with discontinuous derivatives. This strategy will be referred as Enriched Reproducing Kernel Particle Approximation (E-RKPA). The accuracy of the proposed technique will be compared with standard RKP approximations (which only reproduces polynomials).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Aluru. A point collocation method based on reproducing kernel approximations. Int. J. Numer. Meths. Eng., 47:1083–1121, 2000.

    Article  MATH  Google Scholar 

  2. G. T. B. Nayrolles and P. Villon. Generalizing the finite element method: Diffuse approximation and diffuse elements computational mechanics. Journal of Computational Mechanics, 10(5):307–318, 1992.

    Article  Google Scholar 

  3. I. Babuška and J. Melenk. The partition of unity method. Int. J. Numer. Meths. Eng., 40:727–758, 1997.

    Article  Google Scholar 

  4. T. Belytschko, Y. Kronggauz, D. Organ, and M. Fleming. Meshless methods: an overview and recent developments. Comput. Meths. Appl. Mech. Engrg., 139:3–47, 1996.

    Article  MATH  Google Scholar 

  5. J. Chen, C. Pan, C. Roque, and H.P. Wang. A lagrangian reproducing kernel particle method for metal forming. Comput. Mech., 22:289–307, 1998.

    Article  MATH  Google Scholar 

  6. M. Fleming, Y. Chu, B. Moran, and T. Belytschko. Enriched element-free galerkin methods for crack tip fields. Int. J. Numer. Meths. Eng., 40, 1997.

    Google Scholar 

  7. R. Gingold and J. Monaghan. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices Royal Astronomical Society, 181:375–389, 1977.

    MATH  Google Scholar 

  8. W. Han and X. Meng. Error anlysis of the reproducing kernel particle method. Comput. Meths. Appl. Mech. Engrg., 190:6157–6181, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Ji, D. Chopp, and J. Dolbow. A hybrid extended finite/level set method for modeling phase transformtions. Int. J. Numer. Meths. Eng., 54:1209–1233, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  10. Y. Kronggauz and T. Belytschko. Efg approximation with discontinuous derivatives. Int. J. Numer. Meths. Eng., 41:1215–1233, 1998.

    Article  Google Scholar 

  11. W. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko. Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Meths. Eng., 38:1655–1679, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. M. Melenk and I. Babuška. The partition of unity finite element method: Basic theory and applications. Comput. Meths. Appl. Mech. Engrg., 139:289–314, 1996.

    Article  MATH  Google Scholar 

  13. N. Moës and T. Belytschko. Extended finite element method for cohesive crack growth. Engineering Fracture Mechanics, 69:813–833, 2002.

    Article  Google Scholar 

  14. J. Sethian. Evolution, implementation and application of level set and fast marching methods for advancing fronts. J. Comput. Phys., 169:503–555, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  15. T. Strouboulis, K. Corps, and I. Babuška. The generalized finite elment method. Comput. Meths. Appl. Mech. Engrg., 190:4081–4193, 2001.

    Article  MATH  Google Scholar 

  16. N. Sukumar, D. Chopp, N. Moës, and T. Belytschko. Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Meths. Appl. Mech. Engrg., 190:6183–6200, 2001.

    Article  MATH  Google Scholar 

  17. G. Ventura, J. Xu, and T. Belytschko. A vector level set method and new discontinuity approximations for crack growth by efg. Int. J. Numer. Meths. Eng., 54:923–944, 2002.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joyot, P., Trunzler, J., Chinesta, F. (2005). Enriched Reproducing Kernel Approximation: Reproducing Functions with Discontinuous Derivatives. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations II. Lecture Notes in Computational Science and Engineering, vol 43. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-27099-X_6

Download citation

Publish with us

Policies and ethics