Skip to main content

The α-shape Based Natural Element Method in Solid and Fluid Mechanics

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 43))

Abstract

The Natural Element method (also known as Natural Neighbour Galerkin method) is a Galerkin method based on the use of Natural Neighbour interpolation to construct the trial and test functions. Unlike many other meshless methods, it has some important characteristics, such as interpolant shape functions, easy imposition of essential boundary conditions and linear precision along convex boundaries.

The natural neighbour interpolation scheme is based on the construction of a Delaunay triangulation of the given set of points. This geometrical link provides the NEM some other interesting properties. One of them is the ability of constructing models without any explicit (CAD) boundary description. Instead, by invoking the concept of α-shape of the cloud of points, the method is able to accurately extract the geometry described by the nodes as it evolves, thus avoiding complex geometrical checks in the formation of holes or waves in the domain, without any loss in mass conservation requirements. It has been also proved how the use of α-shapes ensures the strictly interpolant character of the shape functions along any type of boundary. In this work we review the main characteristics of the method in its application to Solid and Fluid Mechanics, including the study of mixed natural neighbour approximation, simulation of nearly incompressible media and some industrial applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes equations. Calcolo, 21:337–344, 1984.

    MATH  MathSciNet  Google Scholar 

  2. I. Babuška. The Finite Element Method with Lagrange multipliers. Numerische Mathematik, 20:179–192, 1973.

    Article  Google Scholar 

  3. I. Babuška and J. M. Melenk. The partition of unity finite element method: Basic theory and applications. Comp. Meth. in Appl. Mech. and Eng., 4:289–314, 1996.

    Google Scholar 

  4. K. J. Bathe. Finite Element procedures. Prentice-Hall, 1996.

    Google Scholar 

  5. J.-D. Boissonnat and F. Cazals. Natural neighbour coordinates of points on a surface. Computational Geometry: Theory and Applications, 19(2–3):155–173, 2001.

    MATH  MathSciNet  Google Scholar 

  6. J. Bonet and S. Kulasegaram. Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. International Journal for Numerical Methods in Engineering, 47:1189–1214, 2000.

    Article  MATH  Google Scholar 

  7. F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrange multipliers. Revue Française d’Automatique Informatique Recherche Operationelle, Analyse Numérique, 8:129–151, 1974.

    MATH  MathSciNet  Google Scholar 

  8. D. Chapelle and K. J. Bathe. The inf-sup test. Computers and Structures, 47(4–5):537–545, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  9. E. Cueto, M. Doblaré, and L. Gracia. Imposing essential boundary conditions in the Natural Element Method by means of density-scaled α-shapes. International Journal for Numerical Methods in Engineering, 49-4:519–546, 2000.

    Article  Google Scholar 

  10. E. Cueto, N. Sukumar, B. Calvo, J. Cegoñino, and M. Doblaré. Overview and recent advances in Natural Neighbour Galerkin methods. Archives of Computational Methods in Engineering, 10(4):307–387, 2003.

    MATH  MathSciNet  Google Scholar 

  11. B. Delaunay. Sur la Sphère Vide. A la memoire de Georges Voronoi. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7:793–800, 1934.

    MATH  Google Scholar 

  12. H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a set of points in the plane. IEEE Transactions on Information Theory, IT-29(4):551–559, 1983.

    Article  MathSciNet  Google Scholar 

  13. H. Edelsbrunner and E. Mücke. Three dimensional alpha shapes. ACM Transactions on Graphics, 13:43–72, 1994.

    Article  MATH  Google Scholar 

  14. D. González, E. Cueto, and M. Doblaré. Volumetric locking in Natural Neighbour Galerkin methods. International Journal for Numerical Methods in Engineering, submitted for publication, 2003.

    Google Scholar 

  15. H Hiyoshi and K. Sugihara. Voronoi-based interpolation with higher continuity. In Proceedings of the 16th Annual ACM Symposium on Computational Geometry, pages 242–250, 2000.

    Google Scholar 

  16. R. W. Lewis, S. E. Navti, and C. Taylor. A mixed lagrangian-eulerian approach to modelling fluid flow during mould filling. International Journal for Numerical Methods in Engineering, 25:931–952, 1997.

    MATH  Google Scholar 

  17. M. A. Martínez, E. Cueto, M. Doblaré, and F. Chinesta. Natural Element meshless simulation of injection processes involving short fiber suspensions. Journal of Non-Newtonian Fluid Mechanics, 115:51–78, 2003.

    Article  MATH  Google Scholar 

  18. R. Sibson. A brief description of natural neighbour interpolation. In Interpreting Multivariate Data. V. Barnett (Editor), pages 21–36. John Wiley, 1981.

    Google Scholar 

  19. N. Sukumar, B. Moran, and T. Belytschko. The Natural Element Method in Solid Mechanics. International Journal for Numerical Methods in Engineering, 43(5):839–887, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Teichmann and M. Capps. Surface reconstruction with anisotropic density-scaled alpha shapes. In Proceedings of the 1998 IEEE Visualization Conference, 1998.

    Google Scholar 

  21. S. Timoshenko and J. N. Goodier. Teoría de la Elasticidad. Editorial Urmo, 1972.

    Google Scholar 

  22. G. M. Voronoi. Nouvelles Applications des Paramètres Continus à la Théorie des Formes Quadratiques. Deuxième Memoire: Recherches sur les parallélloèdres Primitifs. J. Reine Angew. Math., 134:198–287, 1908.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González, D., Alfaro, I., Cueto, E., Doblaré, M., Chinesta, F. (2005). The α-shape Based Natural Element Method in Solid and Fluid Mechanics. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations II. Lecture Notes in Computational Science and Engineering, vol 43. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-27099-X_4

Download citation

Publish with us

Policies and ethics