Skip to main content

Meshfree Petrov-Galerkin Methods for the Incompressible Navier-Stokes Equations

  • Conference paper
Meshfree Methods for Partial Differential Equations II

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 43))

  • 1247 Accesses

Abstract

Meshfree stabilised methods are employed and compared for the solution of the incompressible Navier-Stokes equations in Eulerian formulation. These Petrov-Galerkin methods are standard tools in the FEM context, and can be used for meshfree methods as well. However, the choice of the stabilisation parameter has to be reconsidered. We find that reliable and successful approximation with standard formulas for the stabilisation parameter can only be expected for shape functions with small supports or dilatation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks, A.N.; Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comp. Methods Appl. Mech. Engrg., 32, 199–259, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  2. Christie, I.; Griffiths, D.F.; Mitchell, A.R.; Zienkiewicz, O.C.: Finite element methods for second order differential equations with significant first derivatives. Internat. J. Numer. Methods Engrg., 10, 1389–1396, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  3. Donea, J.; Huerta, A.: Finite Element Methods for Flow Problems. John Wiley & Sons, Chichester, 2003.

    Book  Google Scholar 

  4. Franca, L.P.; Frey, S.L.: Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comp. Methods Appl. Mech. Engrg., 99, 209–233, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  5. Franca, L.P.; Frey, S.L.; Hughes, T.J.R.: Stabilized finite element methods: I. Application to the advective-diffusive model. Comp. Methods Appl. Mech. Engrg., 95, 253–276, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  6. Fries, T.P.; Matthies, H.G.: Classification and Overview of Meshfree Methods. Informatikbericht-Nr. 2003-03, Technical University Braunschweig, (http://opus.tu-bs.de/opus/volltexte/2003/418/), Brunswick, 2003.

    Google Scholar 

  7. Fries, T.P.; Matthies, H.G.: A Review of Petrov-Galerkin Stabilization Approaches and an Extension to Meshfree Methods. Informatikbericht-Nr. 2004-01, Technical University of Braunschweig, (http://opus.tubs.de/opus/volltexte/2004/549/), Brunswick, 2004.

    Google Scholar 

  8. Ghia, U.; Ghia, K.N.; Shin, C.T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multi-grid method. J. Comput. Phys., 48, 387–411, 1982.

    Article  MATH  Google Scholar 

  9. Heinrich, J.C.; Huyakorn, P.S.; Zienkiewicz, O.C.; Mitchell, A.R.: An ‘upwind’ finite element scheme for two-dimensional convective transport equation. Internat. J. Numer. Methods Engrg., 11, 131–143, 1977.

    Article  MATH  Google Scholar 

  10. Huerta, A.; Fernández-Méndez, S.M.: Time accurate consistently stabilized mesh-free methods for convection-dominated problems. Internat. J. Numer. Methods Engrg., 50, 1–18, 2001.

    Article  MathSciNet  Google Scholar 

  11. Hughes, T.J.R.: A simple scheme for developing ‘upwind’ finite elements. Internat. J. Numer. Methods Engrg., 12, 1359–1365, 1978.

    Article  MATH  Google Scholar 

  12. Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comp. Methods Appl. Mech. Engrg., 127, 387–401, 1995.

    Article  MATH  Google Scholar 

  13. Hughes, T.J.R.; Brooks, A.N.: A multidimensional upwind scheme with no crosswind diffusion. In ASME Monograph AMD-34. (Hughes, T.J.R., Ed.), Vol. 34, ASME, New York, NY, 1979.

    Google Scholar 

  14. Hughes, T.J.R.; Franca, L.P.: A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comp. Methods Appl. Mech. Engrg., 65, 85–96, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  15. Hughes, T.J.R.; Franca, L.P.; Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comp. Methods Appl. Mech. Engrg., 59, 85–99, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  16. Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M.: A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/Least-squares method for advective-diffusive equations. Comp. Methods Appl. Mech. Engrg., 73, 173–189, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  17. Kelly, D.W.; Nakazawa, S.; Zienkiewicz, O.C.: A note on upwinding and anisotriopic balancing dissipation in finite element approximations to convective diffusion problems. Internat. J. Numer. Methods Engrg., 15, 1705–1711, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  18. Lancaster, P.; Salkauskas, K.: Surfaces Generated by Moving Least Squares Methods. Math. Comput., 37, 141–158, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, W.K.; Jun, S.; Zhang, Y.F.: Reproducing Kernel Particle Methods. Int. J. Numer. Methods Fluids, 20, 1081–1106, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  20. Shakib, F.; Hughes, T.J.R.; Johan, Z.: A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations. Comp. Methods Appl. Mech. Engrg., 89, 141–219, 1991.

    Article  MathSciNet  Google Scholar 

  21. S. Mittal: On the performance of high aspect ratio elements for incompressible flows. Comp. Methods Appl. Mech. Engrg., 188, 269–287, 2000.

    Article  MATH  Google Scholar 

  22. Tezduyar, T.E.: Stabilized Finite Element Formulations for Incompressible Flow Computations. In Advances in Applied Mechanics. (Hutchinson, J.W.; Wu, T.Y., Eds.), Vol. 28, Academic Press, New York, NY, 1992.

    Google Scholar 

  23. Tezduyar, T.E.; Mittal, S.; Ray, S.E.; Shih, R.: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comp. Methods Appl. Mech. Engrg., 95, 221–242, 1992.

    Article  MATH  Google Scholar 

  24. Tezduyar, T.E.; Osawa, Y.: Finite element stabilization parameters computed from element matrices and vectors. Comp. Methods Appl. Mech. Engrg., 190, 411–430, 2000.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fries, TP., Matthies, H.G. (2005). Meshfree Petrov-Galerkin Methods for the Incompressible Navier-Stokes Equations. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations II. Lecture Notes in Computational Science and Engineering, vol 43. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-27099-X_3

Download citation

Publish with us

Policies and ethics