Skip to main content

Biochemistry-based health care research

  • Chapter
Health Research in Developing Countries
  • 650 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson BB, Scattoni M, Perry GM, Galvan P, Giuberti M, Buonocore G, Vullo C (1994) Is the flavin-deficient red blood cell common in Maremma, Italy, an important defense against malaria in this area? Am J Hum Genet 55: 975–980.

    PubMed  CAS  Google Scholar 

  • Anstey NM, Hassanali MY, Mlalasi J, Manyenga D, Mwaikambo ED (1996) Elevated levels of methaemoglobin in Tanzanian children with severe and uncomplicated malaria. Trans R Soc Trop Med Hyg 90: 147–151.

    Article  PubMed  CAS  Google Scholar 

  • Becker K, Krebs B, Schirmer RH (1991) Protein-chemical standardization of the erythrocyte glutathione reductase activation test (EGRAC test). Application to hypothyroidism. Int J Nutr Res 61:180–187.

    CAS  Google Scholar 

  • Becker K, Rahlfs S, Nickel C, Schirmer RH (2003) Glutathione-function and metabolism in the malarial parasite Plasmodium falciparum. Biol Chem 384: 551–566.

    PubMed  CAS  Google Scholar 

  • Brewer GJ, Tarlov AR, Alving AS (1962) The methemoglobin reduction test for primaquine-type sensitivity of erythrocytes. A simplified procedure for detecting a specific hypersusceptibility for drug hemolysis. JAMA 180: 386–388.

    PubMed  CAS  Google Scholar 

  • Cook GC, Zumla A (2003) MANSON’s TROPICAL DISEASES. Twenty-first edition. WB Saunders-Elsevier Science Ltd, Edinburgh.

    Google Scholar 

  • Coulibaly B (2004) Malaria-related studies on enzymopathies, methemoglobin, and methylene blue. PhD thesis, Heidelberg University

    Google Scholar 

  • Eubel J, Coulibaly B, Davioud-Charvet E, Becker K, Schirmer RH (2004) Interactions of methylene blue with the glutathione redox system of Plasmodium falciparum. Intern J Med Microbiol 293Suppl.38: 84–85.

    Google Scholar 

  • Ginsburg H (2003) Redox metabolism in malaria: from genes, through biochemistry and pathology, to drugs. Redox Rep 8:231–233

    PubMed  Google Scholar 

  • Guttmann P, Ehrlich P (1891) Ãœber die Wirkung von Methylenblau bei Malaria. Berl Klin Wochenschr 28, 953–956

    Google Scholar 

  • Kanzok S, Fechner A, Bauer H, Ulschmid JK, Botella JA, Schneuwly S, Müller HM, Schirmer RH, Becker K (2001) The thioredoxin system substitutes for glutathione reductase in Drosophila melanogaster. Science 291, 643–646

    Article  PubMed  CAS  Google Scholar 

  • Krauth-Siegel RL, Bauer H, Schirmer RH (2004) Dithiol proteins as guardians of the intracellular redox milieu in parasites. Old and new drug targets in trypanosomes and malaria-causing plasmodia. Angewandte Chemie International Edition English, in press

    Google Scholar 

  • Mandi G, Witte S, Meissner P, Coulibaly B et al. (2004) Safety of the combination of chloroquine and methylene blue in healthy adult men with G6PD deficiency from rural Burkina Faso, in press

    Google Scholar 

  • Merkle H (2004) Redox-aktive Thiol-Proteine als Drug Targets. Beiträge zur Pathophysiologie und Chemotherapie der Malaria. MD thesis, Heidelberg University

    Google Scholar 

  • Ruwende C, Hill A (1998) Glucose-6-phosphate dehydrogenase deficiency and malaria. J Mol Med 76:581–588.

    Article  PubMed  CAS  Google Scholar 

  • Sarma GN, Savvides SN, Becker K, Schirmer M, Schirmer RH, Karplus PA (2003) Glutathione reductase of the malarial parasite Plasmodium falciparum: Crystal structure and inhibitor development. J Mol Biol 328: 893–907

    Article  PubMed  CAS  Google Scholar 

  • Scheiwein M (2001) Pathophysiologische und chemotherapeutische Mechanismen der Glutathionreduktase-Inaktivierung bei Malaria. MD thesis, Heidelberg University

    Google Scholar 

  • Schirmer RH (2002) Der Parasit ohne Gnade: Der Malariaerreger und seine Masken. development company for television program dctp, Düsseldorf, 45 min; EAS 07.04.02 SAT 1

    Google Scholar 

  • Schirmer RH, Coulibaly B, Stich A, Scheiwein M, Merkle H, Eubel J, Becker K, Becher H, Müller O, Zich T, Schiek W, Kouyaté B (2003) Methylene blue as an antimalarial agent. Redox Report 8, 272–275

    Article  PubMed  CAS  Google Scholar 

  • Ziebuhr W, Xiao K, Coulibaly B, Schwarz R, Dandekar T (2004) Pharmacogenomic strategies against resistance development in microbial infections. Pharmacogenomics (2004) 5, 361–379

    Article  PubMed  CAS  Google Scholar 

References

  1. Guttmann P, Ehrlich P. Über die Wirkung des Methylenblau bei Malaria. Berl Klin Wochenschr 1891; 28: 953–956.

    Google Scholar 

  2. Mansouri A, Lurie AA. Concise review: methemoglobinemia. Am J Hematol 1993; 42: 7–12.

    PubMed  CAS  Google Scholar 

  3. Coleman MD, Coleman NA. Drug-induced methaemoglobinaemia. Treatment issues. Drug Saf 1996; 14: 394–405.

    Article  PubMed  CAS  Google Scholar 

  4. Peter C, Hongwan D, Kupfer A, Lauterburg BH. Pharmacokinetics and organ distribution of intravenous and oral methylene blue. Eur J Clin Pharmacol 2000; 56: 247–250.

    Article  PubMed  CAS  Google Scholar 

  5. Pelgrims J, De Vos F, Van den Brande J, Schrijvers D, Prove A, Vermorken JB. Methylene blue in the treatment and prevention of ifosfamide-induced encephalopathy: report of 12 cases and a review of the literature. Br J Cancer 2000; 82: 291–294.

    Article  PubMed  CAS  Google Scholar 

  6. Anstey NM, Hassanali MY, Mlalasi J, Manyenga D, Mwaikambo ED. Elevated levels of methaemoglobin in Tanzanian children with severe and uncomplicated malaria. Trans R Soc Trop Med Hyg 1996; 90: 147–151.

    Article  PubMed  CAS  Google Scholar 

  7. Quandt KS, Hultquist DE. Flavin reductase: sequence of cDNA from bovine liver and tissue distribution. Proc Natl Acad Sci USA 1994; 91: 9322–9326.

    PubMed  CAS  Google Scholar 

  8. Färber PM, Becker K, Müller S, Schirmer RH, Franklin RM. Molecular cloning and characterization of a putative glutathione reductase gene, the PfGR2 gene, from Plasmodium falciparum. Eur J Biochem 1996; 239: 655–661.

    PubMed  Google Scholar 

  9. Atamna H, Pascarmona G, Ginsburg H. Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites. Mol Biochem Parasitol 1994; 67: 79–89.

    Article  PubMed  CAS  Google Scholar 

  10. Vennerstrom JL, Makler MT, Angerhofer CK, Williams JA. Antimalarial dyes revisited: xanthenes, azines, oxazines, and thiazines. Antimicrob Agents Chemother 1995; 39: 2671–2677.

    PubMed  CAS  Google Scholar 

  11. Atamna H, Krugliak M, Shalmiev G, Deharo E, Pescarmona G, Ginsburg H. Mode of antimalarial effect of methylene blue and some of its analogues on Plasmodium falciparum in culture and their inhibition of P. vinckei petteri and P. yoelii nigeriensis in vivo. Biochem Pharmacol 1996; 51: 693–700.

    Article  PubMed  CAS  Google Scholar 

  12. Thurston JP. The chemotherapy of Plasmodium berghei. Resistance to drugs. Parasitology 1953; 43: 246–252.

    PubMed  CAS  Google Scholar 

  13. Ridley RG. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 2002; 415: 686–693.

    Article  PubMed  CAS  Google Scholar 

  14. Akompong T, Ghori N, Haldar K. In vitro activity of riboflavin against the human malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 2000; 44: 88–96.

    Article  PubMed  CAS  Google Scholar 

  15. Färber PM, Arscott LD, Williams Jr CH, Becker K, Schirmer RH. Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarial dye methylene blue. FEBS Lett 1998; 422: 311–314.

    PubMed  Google Scholar 

  16. Gilberger TW, Schirmer RH, Walter RD, Müller S. Deletion of the parasite-specific insertions and mutation of the catalytic triad in glutathione reductase from chloroquine-sensitive Plasmodium falciparum 3D7. Mol Biochem Parasitol 2000; 107: 169–179.

    Article  PubMed  CAS  Google Scholar 

  17. Sarma GN, Savvides SN, Becker K, Schirmer M, Schirmer RH, Karplus PA. Glutathione reductase of the malarial parasite Plasmodium falciparum: crystal structure and inhibitor development. J Mol Biol 2003; In press.

    Google Scholar 

  18. Becker K, Rahlfs S, Nickel C, Schirmer RH. Glutathione-function and metabolism in the malarial parasite Plasmodium falciparum. J Mol Biol 2003; In press.

    Google Scholar 

  19. Luond RM, McKie JH, Douglas KT, Dascombe MJ, Vale J. Inhibitors of glutathione reductase as potential antimalarial drugs. Kinetic cooperativity and effect of dimethyl sulphoxide on inhibition kinetics. J Enzyme Inhib 1998; 13: 327–345.

    Article  PubMed  CAS  Google Scholar 

  20. Davioud-Charvet E, Delarue S, Biot C et al. A prodrug form of a Plasmodium falciparum glutathione reductase inhibitor conjugated with a 4-anilinoquinoline. J Med Chem 2001; 44: 4268–4276.

    Article  PubMed  CAS  Google Scholar 

  21. Ginsburg H. A double-headed prodrug that overcomes chloroquine resistance. Trends Parasitol 2002; 18: 103.

    PubMed  Google Scholar 

  22. Zhang YA, Hempelmann E, Schirmer RH. Glutathione reductase inhibitors as potential antimalarial drugs. Effects of nitrosoureas on Plasmodium falciparum in vitro. Biochem Pharmacol 1988; 37: 855–860.

    PubMed  CAS  Google Scholar 

  23. Dubois VL, Platel DF, Pauly G, Tribouley-Duret J. Plasmodium berghei: implication of intracellular glutathione and its related enzyme in chloroquine resistance in vivo. Exp Parasitol 1995; 81: 117–124.

    Article  PubMed  CAS  Google Scholar 

  24. Müller S, Gilberger TW, Krnajski Z, Lüersen K, Meierjohann S, Walter RD. Thioredoxin and glutathione system of malaria parasite Plasmodium falciparum. Protoplasma 2001; 217: 43–49.

    PubMed  Google Scholar 

  25. Peters W. Chemotherapy and Drug Resistance in Malaria. London: Academic Press, 1970.

    Google Scholar 

  26. Scheiwein M. Pathophysiologische und chemotherapeutische Mechanismen der Glutathionreduktase-Inaktivierung bei Malaria. MD thesis, Heidelberg, Germany: Heidelberg University 2001.

    Google Scholar 

  27. Beutler E, Mitchell M. Special modifications of the fluorescent screening method for glucose-6-phosphate dehydrogenase deficiency. Blood 1968; 32: 816–818.

    PubMed  CAS  Google Scholar 

  28. Becker K, Krebs B, Schirmer RH. Protein-chemical standardization of the erythrocyte glutathione reductase activation test (EGRAC test). Application to hypothyroidism. Int J Nutr Res 1991; 61: 180–187.

    CAS  Google Scholar 

  29. Brewer GJ, Tarlov AR, Alving AS. The methemoglobin reduction test for primaquine-type sensitivity of erythrocytes. A simplified procedure for detecting a specific hypersusceptibility for drug hemolysis. JAMA 1962; 180: 386–388.

    PubMed  CAS  Google Scholar 

  30. Ademowo OG, Falusi AG. Molecular epidemiology and activity of erythrocyte G6PD variants in a homogeneous Nigerian population. East Afr Med J 2002; 79: 42–44.

    PubMed  CAS  Google Scholar 

  31. Ruwende C, Hill A. Glucose-6-phosphate dehydrogenase deficiency and malaria. J Mol Med 1998; 76: 581–588.

    Article  PubMed  CAS  Google Scholar 

  32. Beutler E. G6PD deficiency. Blood 1994; 84: 3613–3636.

    PubMed  CAS  Google Scholar 

  33. Rieckmann K, Cheng Q. Pyrimethamine-sulfadoxine resistance in Plasmodium falciparum must be delayed in Africa. Trends Parasitol 2002; 18: 293–294.

    Article  PubMed  Google Scholar 

  34. Antonov L, Gergov G, Petrov V, Kubista M, Nygren J. UV-Vis spectroscopic and chemometric studies on the aggregation of ionic dyes in water. Talanta 1999; 49: 99–106.

    Article  CAS  PubMed  Google Scholar 

  35. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000; 44: 235–249.

    Article  PubMed  CAS  Google Scholar 

  36. Schirmer RH, Müller JG, Krauth-Siegel RL. Disulfide-reductase inhibitors as chemotherapeutic agents: the design of drugs for trypanosomiasis and malaria. Angew Chem Int Edn 1995; 34: 141–154.

    CAS  Google Scholar 

Bibliography

  • Davison DB, Barrett JF: Antibiotics and pharmacogenomics. Pharmacogenomics 4(5), 657–665 (2003)

    Article  PubMed  Google Scholar 

  • Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y: Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a metaanalysis. Clin. Infect. Dis. 36(1), 53–9 (2003)

    Article  PubMed  Google Scholar 

  • Clarke T: Drug companies snub antibiotics as pipeline threatens to run dry. Nature 425(6955), 225 (2003).

    PubMed  CAS  Google Scholar 

  • Wootton JC, Feng X, Ferdig MT et al.: Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418(6895), 320–3 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Hayney MS: Pharmacogenomics and infectious diseases: impact on drug response and applications to disease management. Am. J. Health Syst. Pharm. 59(17), 1626–31 (2002)

    PubMed  Google Scholar 

  • Alekshun MN: Beyond comparison—antibiotics from genome data? Nat. Biotechnol. 19(12), 1124–5 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Clarke T: Biologists deploy database to quash drug-resistant bacteria. Nature 422(6934), 791 (2003).

    PubMed  CAS  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K et al.: Global analysis of protein expression in yeast. Nature 425(6959), 737–41 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Hood L, Galas D: The digital code of DNA. Nature 421(6921), 444–8 (2003)

    Article  PubMed  CAS  Google Scholar 

  • Felmingham D, Feldman C, Hryniewicz W, Klugman K, Kohno S, Low DE, et al.: Surveillance of resistance in bacteria causing community-acquired respiratory tract infections. Clin. Microbiol. Infect. 8Suppl. 2, 12–42 (2002).

    PubMed  Google Scholar 

  • Parry CM: Antimicrobial drug resistance in Salmonella enterica. Curr. Opin. Infect. Dis. 16, 467–472 (2003).

    PubMed  CAS  Google Scholar 

  • Threlfall EJ, Ward LR, Frost JA, Willshaw GA: The emergence and spread of antibiotic resistance in food-borne bacteria. Int. J. Food Microbiol. 62, 1–5 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Vincent JL: Nosocomial infections in adult intensive-care units. Lancet 361, 2068–2077 (2003).

    Article  PubMed  Google Scholar 

  • Witte W: Antibiotic resistance in gram-positive bacteria: epidemiological aspects. J. Antimicrob. Chemother. 44Suppl. A, 1–9 (1999).

    PubMed  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Biochemistry-based health care research. In: Becher, H., Kouyaté, B. (eds) Health Research in Developing Countries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27079-5_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-27079-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23796-9

  • Online ISBN: 978-3-540-27079-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics