Skip to main content

Dimensional Split Divergence-Free Reconstruction and Prolongation for Adaptive Mesh Refinement

  • Conference paper
Adaptive Mesh Refinement - Theory and Applications

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 41))

  • 3275 Accesses

Summary

A simple novel approach to preserve the divergence-free condition with adaptive mesh refinement is presented. The new approach uses only reconstructions on the coarse faces and the divergence-free condition to reconstruct the field values on the internal fine faces, and does not construct a global interpolation polynomial over a whole coarse cell. Therefore it can be easily applied to any refinement ratio. It is implemented via a directionally split approach in a directional splitting manner so that it can be applied to any kind of grids in any dimensions. Implementation is presented in the Cartesian, cylindrical and spherical geometries. It is shown by several 2D magneto-hydrodynamic simulations that such a method can keep the divergence-free error of magnetic fields at the round-off level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys. 82 (1989), 64–84.

    Article  MATH  Google Scholar 

  2. D. S. Balsara and D. S. Spicer, A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamics simulations, J. Comput. Phys. 149 (1999), 270–292.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. U. Brackbill and D. C. Barnes, The effect of nonzero ∇·B on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 35 (1980), 426.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. S. Balsara, Divergence-free adaptive mesh refinement for magnetohydrodynamics, J. Comput. Phys., 174 (2001), 614–648.

    Article  MATH  Google Scholar 

  5. D. S. Balsara, Second order accurate schemes for magnetohydrodynamics with divergence-free reconstruction, astro-ph/0308249, (2003).

    Google Scholar 

  6. W. Dai and P. R. Woodward, A simple finite difference scheme for multidimensional magnetohydrodynamics, J. Comput. Phys. 142 (1998), 331–369.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. R. Evans and J. F. Hawley, Simulation of magnetohydrodynamic flows: A constrained transport method, Astrophys. J. 332 (1989), 659.

    Article  Google Scholar 

  8. P. Londrillo and L. Del Zanna, High-order upwinding schemes for multidimensional magnetohydrodynamics, Astrophysics, J. 530 (2000), 508.

    Article  Google Scholar 

  9. S. Li and H. Li, A modern code for solving magnetohydrodynamics or hydrodynamic equations, Technical Report, Los Alamos National Laboratory, 2003.

    Google Scholar 

  10. D. Ryu, F. Miniati, T. W. Jones, and A. Frank, A divergence-free upwinding code for multi-dimensional MHD flows, Astrophysics. J., 509 (1998), 244–255.

    Article  Google Scholar 

  11. G. Tóth, The ∇ · B = 0 constraint in shock-capturing magnetohydrodynamics codes, J. Comt. Phys., 161 (2000), 605–652.

    Article  MATH  Google Scholar 

  12. G. Tóth and P. L. Roe, Divergence-and curl-preserving prolongation and restriction formulas, J. Comt. Phys., 180 (2002), 736–750.

    Article  MATH  Google Scholar 

  13. K. S. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equation in an isotropic media, IEEE Trans. Antenna Propagation AP-14 (1966), 302

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, S., Li, H. (2005). Dimensional Split Divergence-Free Reconstruction and Prolongation for Adaptive Mesh Refinement. In: Plewa, T., Linde, T., Gregory Weirs, V. (eds) Adaptive Mesh Refinement - Theory and Applications. Lecture Notes in Computational Science and Engineering, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27039-6_9

Download citation

Publish with us

Policies and ethics