Skip to main content

Parallel, AMR MHD for Global Space Weather Simulations

  • Conference paper
Adaptive Mesh Refinement - Theory and Applications

Summary

This paper presents the methodology behind and results of adaptive mesh refinement in global magnetohydrodynamic models of the space environment. Techniques used in solving the governing equations of semi-relativistic magnetohydrodynamics (MHD) are presented. These techniques include high-resolution upwind schemes, block-based solution-adaptive grids, explicit, implicit and partial-implicit time-stepping, and domain decomposition for parallelization. Recent work done in coupling the MHD model to upper-atmosphere and inner-magnetosphere models is presented, along with results from modeling a solar coronal mass ejection and its interaction with Earth’s magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. J. Berger. Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations. PhD thesis, Stanford Univ., Stanford, Calif., January 1982.

    Google Scholar 

  2. M. J. Berger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys., 53:484–512, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys., 82:67–84, 1989.

    Article  Google Scholar 

  4. M. J. Berger and R. J. LeVeque. An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries. In Proc. 9th AIAA Computational Fluid Dynamics Conference. AIAA Paper No. 89-1930, Buffalo, NY, June 1989.

    Google Scholar 

  5. M. J. Berger and S. Saltzman. AMR on the CME-2. Appl. Numer. Math., 14:239–253, 1994.

    Article  MathSciNet  Google Scholar 

  6. J. P. Boris. A physically motivated solution of the Alfvén problem. Technical Report NRL Memorandum Report 2167, Naval Research Laboratory, Washington, D.C., 1970.

    Google Scholar 

  7. J.U. Brackbill and D.C. Barnes. The effect of nonzero ∇· B on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys., 35:426–430, 1980.

    Article  MathSciNet  Google Scholar 

  8. W. Dai and P. R. Woodward. A simple finite difference scheme for multidimensional magnetohydrodynamic equations. J. Comput. Phys., 142:331, 1998.

    Article  MathSciNet  Google Scholar 

  9. A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg. Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys., 00:00–00, 2001. submitted.

    Google Scholar 

  10. G. M. Erickson, R. W. Spiro, and R. A. Wolf. The physics of the harang discontinuity. J. Geophys. Res., 96:1633–1645, 1991.

    Google Scholar 

  11. S. K. Godunov. Symmetric form of the equations of magnetohydrodynamics (in Russian). In Numerical Methods for Mechanics of Continuum Medium, volume 1, pages 26–34. Siberian Branch of USSR Acad. of Sci., Novosibirsk, 1972.

    Google Scholar 

  12. T. I. Gombosi, G. Tóth, D. L. De Zeeuw, K. C. Hansen, K. Kabin, and K. G. Powell. Semi-relativistic magnetohydrodynamics and physics-based convergence acceleration. J. Comput. Phys., 177:176–205, 2002.

    Article  MathSciNet  Google Scholar 

  13. M. Harel, R. A. Wolf, P. H. Reiff, R. W. Spiro, W. J. Burke, F. J. Rich, and M. Smiddy. Quantitative simulation of a magnetospheric substorm 1, Model logic and overview. J. Geophys. Res., 86:2217–2241, 1981.

    Google Scholar 

  14. A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 49:357–393, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. K. Jaggi and R. A. Wolf. Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J. Geophys. Res., 78:2842, 1973.

    Google Scholar 

  16. R. Keppens, G. Tóth, M. A. Botchev, and A. van der Ploeg. Implicit and semi-implicit schemes: Algorithms. Int. J. for Num. Meth. in Fluids, 30:335–352, 1999.

    Article  Google Scholar 

  17. T. J. Linde. A Three-Dimensional Adaptive Multifluid MHD Model of the Heliosphere. PhD thesis, Univ. of Mich., Ann Arbor, May 1998.

    Google Scholar 

  18. P. Londrillo and L. Del Aanna. High-order upwind schemes for multidimensional magnetohydrodynamics. Astrophys. J., 530:508–524, 2000.

    Article  Google Scholar 

  19. W. B. Manchester, T. I. Gombosi, I. Roussev, D. L. De Zeeuw, I. V. Sokolov, and K. G. Powell. Thre-dimensional mhd simulation of a flux-rope driven cme. J. Geophys. Res., 109, 2004.

    Google Scholar 

  20. K. G. Powell. An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Technical Report 94-24, Inst. for Comput. Appl. in Sci. and Eng., NASA Langley Space Flight Center, Hampton, Va., 1994.

    Google Scholar 

  21. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys., 154(2):284–309, September 1999.

    Article  MathSciNet  Google Scholar 

  22. J. J. Quirk. An Adaptive Grid Algorithm for Computational Shock Hydrodynamics. PhD thesis, Cranfield Inst. of Technol., Cranfield, England, January 1991.

    Google Scholar 

  23. J. J. Quirk and U. R. Hanebutte. A parallel adaptive mesh refinement algorithm. Technical Report 93-63, ICASE, August 1993.

    Google Scholar 

  24. A. D. Richmond, E. C. Ridley, and R. G. Roble. A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett., 19:601–604, 1992.

    Google Scholar 

  25. A. J. Ridley, D. L. De Zeeuw, T. I. Gombosi, and K. G. Powell. Using steady-state MHD results to predict the global state of the magnetosphere-ionosphere system. J. Geophys. Res., 106:30,067–30,076, 2001.

    Article  Google Scholar 

  26. A. J. Ridley, T. I. Gombosi, and D. L. De Zeeuw. Ionospheric control of the magnetosphere: Conductance. J. Geophys. Res., 00:00–00, 2002. in preparation.

    Google Scholar 

  27. A. J. Ridley, T. I. Gombosi, D. L. De Zeeuw, C. R. Clauer, and A. D. Richmond. Ionospheric control of the magnetosphere: Neutral winds. J. Geophys. Res., 00:00–00, 2002. in preparation.

    Google Scholar 

  28. A. J. Ridley, K. C. Hansen, G. Tóth, D. L. De Zueew, T. I. Gombosi, and K. G. Powell. University of Michigan MHD results of the GGCM metrics challenge. J. Geophys. Res., 107:000–000, 2002. in press.

    Google Scholar 

  29. P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43:357–372, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  30. P. L. Roe and D. S. Balsara. Notes on the eigensystem of magnetohydrodynamics. SIAM J. Appl. Math., 56(1):57–67, February 1996.

    Article  MathSciNet  Google Scholar 

  31. G. Tóth. The ∇ · B constraint in shock capturing magnetohydrodynamic codes. J. Comput. Phys., 161:605–652, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  32. G. Tóth, R. Keppens, and M. A. Botchev. Implicit and semi-implicit schemes in the Versatile Advection Code: Numerical tests. Astron. Astrophys., 332:1159–1170, 1998.

    Google Scholar 

  33. B. van Leer. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys., 32:101–136, 1979.

    Article  Google Scholar 

  34. R. A. Wolf. The quasi-static (slow-flow) region of the magnetosphere. In R. L. Carovillano and J. M. Forbes, editors, Solar Terrestrial Physics, pages 303–368. D. Reidel Publishing, Hingham, MA, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Powell, K.G., De Zeeuw, D.L., Sokolov, I.V., Tóth, G., Gombosi, T.I., Stout, Q. (2005). Parallel, AMR MHD for Global Space Weather Simulations. In: Plewa, T., Linde, T., Gregory Weirs, V. (eds) Adaptive Mesh Refinement - Theory and Applications. Lecture Notes in Computational Science and Engineering, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27039-6_36

Download citation

Publish with us

Policies and ethics