Skip to main content

Multiresolution-based adaptive schemes for Hyperbolic Conservation Laws

  • Conference paper
Adaptive Mesh Refinement - Theory and Applications

Summary

Starting in the early nineties, wavelet and wavelet-like techniques have been successfully used to design adaptive schemes for the numerical solution of certain types of PDE. In this paper we review two representative examples of the development of such techniques for Hyperbolic Conservation Laws.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abgrall. Multiresolution analysis on unstructured meshes: Applications to CFD. In Chetverushkin et al., editor, Experimentation, modelling and computation in flow, turbulence and combustion. John Wiley & Sons, 1997.

    Google Scholar 

  2. R. Abgrall and A. Harten. Multiresolution representation in unstructured meshes. SIAM J. Num. Anal., 35-6:2128–2146, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. Journal of Comput. Phys., 82:64–84, 1989.

    Article  MATH  Google Scholar 

  4. B. Bihari and A. Harten. Application of generalized wavelets: An adaptive multiresolution scheme. J. Comp. Appl. Math, 61:275–321, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Bihari and A. Harten. Multiresolution schemes for the numerical solution of 2-D conservation laws I. SIAM J. Sci. Comput., 18(2):315–354, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Bihari. Multiresolution schemes for conservation laws with viscosity. J. Comp. Phys., 123:207–225, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Bramkamp, Ph. Lamby, and S. Müller. An adaptive multiscale finite volume solver for unsteady and steady state flow computations. 2003. To appear in J. Comp. Phys.

    Google Scholar 

  8. E. Bacry, S. Mallat, and G. Papanicolaou. A wavelet based space-time adaptive numerical method for partial differential equations. Mathematical Modeling and Numerical Analysis, 26(7):793, 1992.

    MathSciNet  MATH  Google Scholar 

  9. M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J. of Comput. Phys., 53:484–512, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  10. B.L. Bihari, D.K. Ota, Z. Liu, and S.V. Ramakrishnan. The multiresolution method on general unstructured meshes. AIAA, (2001–2553), 2001.

    Google Scholar 

  11. G. Chiavassa and R. Donat. Point value multiresolution for 2D compressible flows. SIAM J. Sci. Comput., 23(3):805–823, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Cohen, N. Dyn, S.M. Kaber, and M. Postel. Multiresolution finite volume schemes on triangles. J. Comp. Phys., 161:264–286, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Chiavassa, R. Donat, and A. Marquina. Fine-mesh numerical simulations for 2d Riemann problems with a multilevel scheme. In H. Freistühler and G. Warnecke, editors, Hyperbolic Problems: Theory, Numerics, Applications, pages 247–256. Birkhäuser, 2001.

    Google Scholar 

  14. A. Cohen, S.M. Kaber, S. Müller, and M. Postel. Fully Adaptive Multiresolution Finite Volume Schemes for Conservation Laws. Math. Comp., 72(241):183–225, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Cohen, S.M. Kaber,, and M. Postel. Multiresolution Analysis on Triangles: Application to Gas Dynamics. In G. Warnecke and H. Freistühler, editors, Hyperbolic Problems: Theory, Numerics, Applications, pages 257–266. Birkhäuser, 2002.

    Google Scholar 

  16. A. Cohen. Numerical Analysis of Wavelet Methods. Studies in Mathematics and its Applications, 32. North-Holland-Elsevier, Amsterdam, 2003.

    Google Scholar 

  17. W. Dahmen. Wavelet and multiscale methods for operator equations. Acta Numerica, 6:55–228, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  18. G. Deslauries and S. Dubuc. Symmetric iterative interpolation processes. Constructive Approximation, 5:49–68, 1989.

    Article  MathSciNet  Google Scholar 

  19. W. Dahmen, B. Gottschlich-Müller, and S. Müller. Multiresolution schemes for conservation laws. Numer. Math., 88(3):399–443, 2000.

    Article  Google Scholar 

  20. R. Donat and A. Marquina. Capturing shock reflections: An improved flux formula. J. Comp. Phys., 125(1):42–58, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Donoho. Interpolating wavelet transforms. Technical Report 408, Dept. of Statistics, Stanford University, 1992.

    Google Scholar 

  22. B. Gottschlich-Müller and S. Müller. Adaptive finite volume schemes for conservation laws based on local multiresolution techniques. In M. Fey and R. Jeltsch, editors, Hyperbolic Problems: Theory, Numerics, Applications. Birkhäuser, 1999.

    Google Scholar 

  23. B. Gottschlich-Müller. On Multiscale Concepts for Multidimensional Conservation Laws. PhD thesis, RWTH Aachen, October 1998.

    Google Scholar 

  24. A. Harten. Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math., 48(12):1305–1342, 1995.

    MATH  MathSciNet  Google Scholar 

  25. A. Harten. Multiresolution representation of data: A general framework. SIAM J. Numer. Anal., 33(3):1205–1256, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Holmström. Solving hyperbolic pdes using interpolatory wavelets. SIAM J. Sci. Comput., 21-2:405–420, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. Liandrat and P. Tchamitchian. Resolution of the 1 d regularized burgers equation using a spatial wavelet approximation. ICASE Report 90-83.

    Google Scholar 

  28. S. Müller. Adaptive Multiscale Schemes for Conservation Laws, volume 27 of Lecture Notes on Computational Science and Engineering. Springer, 2002.

    Google Scholar 

  29. S. Müller and A. Voss. A Manual for the Template Class Library igpm_t_lib. IGPM-Report 197, RWTH Aachen, 2000.

    Google Scholar 

  30. A. Rault, G. Chiavassa, and R. Donat. Shock-vortex interactions at high mach numbers. J. Scientific Computing, 19:347–371, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  31. O. Roussel, K. Schneider, A. Tsigulin, and H. Bockhorn. A conservative fully adaptive multiresolution algorithm for parabolic PDEs. J. Comp. Phys., 188(2):493–523, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  32. C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock capturing schemes I. J. Comp. Phys., 77:439–471, 1988.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chiavassa, G., Donat, R., Müller, S. (2005). Multiresolution-based adaptive schemes for Hyperbolic Conservation Laws. In: Plewa, T., Linde, T., Gregory Weirs, V. (eds) Adaptive Mesh Refinement - Theory and Applications. Lecture Notes in Computational Science and Engineering, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27039-6_10

Download citation

Publish with us

Policies and ethics