Advertisement

Membrane Bioreactor Technology

  • Mark W. Fitch
Chapter

Keywords

Composite Membrane Silicone Rubber Mass Transfer Resistance Membrane Bioreactor Elimination Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attaway H, Gooding CH, Schmidt MG (2001)Biodegradation of BTEX vapors in a silicone membrane bioreactor system. J Ind Microbiol Biotechnol 26:316–325CrossRefGoogle Scholar
  2. Attaway H, Gooding CH, Schmidt MG (2002) Comparison of microporous and nonporous membrane bioreactor systems for the treatment of BTEX in vapor streams. J Ind Microbiol Biotechnol 28:245–251CrossRefGoogle Scholar
  3. Bäuerle U, Fischer K, Bardtke D (1986) Biologische Abluftreinigung mit Hilfe eines neuartigen Permeationsreaktors. Staub Reinhalt Luft 46:233–235Google Scholar
  4. Bennett M, Brisdon BJ, England R, Field RW (1997) Performance of PDMS and organ of unctionalised PDMS membranes for the pervaporative recovery of organics from aqueous streams. J Membr Sci 137:63–88CrossRefGoogle Scholar
  5. Castro K, Zander AK (1995) Membrane air-stripping — effects of pretreatment. J Am Water Works Assoc 87:50–61Google Scholar
  6. Clapp LW, Regan JM, Ali F, Newman JD, Park JK, Noguera DR (1999) Activity, structure, and stratification of membrane-attached methanotrophic biofilms cometabolically degrading trichloroethylene. Water Sci Technol 39:153–161CrossRefGoogle Scholar
  7. Cocchini U, Nicolella C, Livingston AG (2002) Braided silicone rubber membranes for organic extraction from aqueous solutions. I. Mass transport studies. J Membr Sci 199:85–99CrossRefGoogle Scholar
  8. Coté P, Lipski C (1988) Mass transfer limitations in pervaporation for water and wastewater treatment. In: Bakish R (ed) Proc 3rd Int Conf Pervaporation in the Chemical Industry, 19–22 September 1988, Nancy, France. Bakish Materials Corporation, Englewood Cliffs, pp 449–462Google Scholar
  9. Cox HHJ, Sexton T, Shareefdeen ZM, Deshusses MA (2001) Thermophilic biotrickling filtration of ethanol vapors. Environ Sci Technol 35:2612–2619CrossRefGoogle Scholar
  10. Crank J (1975) The mathematics of diffusion. Clarendon Press, OxfordGoogle Scholar
  11. Crowder RO, Cussler EL (1998) Mass transfer resistances in hollow fiber pervaporation. J Membr Sci 145:173–184CrossRefGoogle Scholar
  12. De Bo I (2003) Membrane biofiltartion of single-compound waste gas streams. Thesis, Universiteit Ghent, Ghent, BelgiumGoogle Scholar
  13. De Bo I, van Langenhove H, Heyman J (2002) Removal of dimethyl sulfide from waste air in a membrane bioreactor. Desalination 148:281–287CrossRefGoogle Scholar
  14. Devinny JS, Deshusses MA, Webster TS (1999) Biofiltration for air pollution control. Lewis, Boca RatonGoogle Scholar
  15. Dolasa AR, Ergas SJ (2000) Membrane bioreactor for cometabolism of trichloro-ethene air emissions. J Environ Eng 126:969–973CrossRefGoogle Scholar
  16. Ergas SJ, McGrath MS (1997) Membrane bioreactor for control of volatile organic compound emissions. J Environ Eng 123:593–598CrossRefGoogle Scholar
  17. Ergas SJ, Reuss AF (2001) Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor. J Water Supply Res Technol 50:161–171Google Scholar
  18. Ergas SJ, Shumway L, Fitch MW, Neemann JJ (1999)Membrane process for biological treatment of contaminated gas streams. Biotechnol Bioeng 63:431–441CrossRefGoogle Scholar
  19. Ferreira Jorge RM, Livingston AG (2000a) Microbial dynamics in an extractive membrane bioreactor exposed to an alternating sequence of organic compounds. Biotechnol Bioeng 70:313–322CrossRefGoogle Scholar
  20. Ferreira Jorge RM, Livingston AG (2000b) Biological treatment of an alternating source of organic compounds in a single tube extractive membrane bioreactor. J Chem Technol Biotechnol 75:1174–1182CrossRefGoogle Scholar
  21. Fitch MW, Sauer S, Zhang B (2000) Membrane biofilters: material choices and diurnal loading. In: Proc USC-TRG Conf Biofiltration, 19–20 October, The Reynolds Group, Los Angeles, pp 83–90Google Scholar
  22. Fitch MW, England E, Zhang B (2002) 1-Butanol removal from a contaminated airstream under continuous and diurnal loading conditions. J Air Waste Manage Assoc 52:1288–1297Google Scholar
  23. Fitch M, Neeman J, England E (2003) Mass transfer and benzene removal from air using latex rubber tubing and a hollow-fiber membrane module. Appl Biochem Biotechnol 104:199–214CrossRefGoogle Scholar
  24. Freitas dos Santos LM, Hommerich U, Livingston AG (1995) Dichloroethane removal from gas streams by an extractive membrane bioreactor. Biotechnol Prog 11:194–201CrossRefGoogle Scholar
  25. Hartmans S, Leenen EJTM, Voskuilen GTH (1992) Membrane bioreactor with porous hydrophobic membranes for waste-gas treatment. In: Dragt AJ, van Ham J (eds) Biotechniques for air pollution abatement and odour control policies. Elsevier, Amsterdam, pp 103–106Google Scholar
  26. Ho CM, Tseng SK, Chang YJ (2001) Autotrophic denitrification via a novel membrane-attached biofilm reactor. Lett Appl Microbiol 33:201–205CrossRefGoogle Scholar
  27. Ho CM, Tseng SK, Chang YJ (2002) Simultaneous nitrification and denitrification using an autotrophic membrane-immobilized biofilm reactor. Lett Appl Microbiol 35:481–485CrossRefGoogle Scholar
  28. Lee KC, Rittmann BE (2000) A novel hollow-fibre membrane biofilm reactor for autohydrogenotrophic denitrification of drinking water. Water Sci Technol 41:219–226Google Scholar
  29. Lévêque MA (1928) Les lois de transmission de chaleur par convection. Ann Mines 13:201Google Scholar
  30. Livingston AG, dosSantos LMF, Pavasant P, Pistikopoulos EN, Strachan LF (1996) Detoxification of industrial wastewaters in an extractive membrane bioreactor. Water Sci Technol 33:1–8CrossRefGoogle Scholar
  31. Loeb S, Sourirajan S (1960) Sea water demineralization by means of a semipermeable membrane. Department of Engineering, University of California, Los Angeles, Rep no 60-60Google Scholar
  32. Mansell BO, Schroeder ED (2002) Hydrogenotrophic denitrification in a microporous membrane bioreactor. Water Res 36:4683–4690CrossRefGoogle Scholar
  33. Min KN, Ergas SJ, Harrison JM (2002) Hollow-fiber membrane bioreactor for nitric oxide removal. Environ Eng Sci 19:575–583CrossRefGoogle Scholar
  34. Moe WM, Irvine RL (2000) Performance of periodically operated-gas phase biofilters during transient loading conditions. Water Sci Technol 41(4/5): 441–444Google Scholar
  35. Nicolella C, Appendini ICG, Zhang SF, Livingston AG (2000a) Control of membrane-attached biofilms in extractive membrane bioreactors. Water Sci Technol 41:227–234Google Scholar
  36. Nicolella C, Pavasant P, Livingston AG (2000b) Substrate counterdiffusion and reaction in membrane-attached biofilms: mathematical analysis of rate limiting mechanisms. Chem Eng Sci 55:1385–1398CrossRefGoogle Scholar
  37. Noguera DR, Pizarro G, Clapp LW (2000) Mathematical modeling of trichloroethylene (TCE) degradation in membrane-attached biofilms. Water Sci Technol 41:239–244Google Scholar
  38. Oliveira TAC, Cocchini U, Scarpello JT, Livingston AG (2001) Pervaporation mass transfer with liquid flow in the transition regime. J Membr Sci 183:119–133CrossRefGoogle Scholar
  39. Parvatiyar MG, Govind R, Bishop DF (1996) Biodegradation of toluene in a membrane biofilter. J Membr Sci 119:17–24CrossRefGoogle Scholar
  40. Pressman JG, Georgiou G, Speitel GE (1999) Demonstration of efficient trichloroethylene biodegradation in a hollow-fiber membrane bioreactor. Biotechnol Bioeng 62:681–692CrossRefGoogle Scholar
  41. Pressman JG, Georgiou G, Speitel GE (2000) A hollow-fiber membrane bioreactor for the removal of trichloroethylene from the vapor phase. Biotechnol Bioeng 68(5):548–556CrossRefGoogle Scholar
  42. Reij MW, Hartmans S (1996) Propene removal from synthetic waste gas using a hollow-fibre membrane bioreactor. Appl Microbiol Biotechnol 45:730–736CrossRefGoogle Scholar
  43. Reij MW, de GooijerKD, de Bont JAM, Hartmans S (1995) Membrane bioreactor with a porous hydrophobic membrane as a gas-liquid contactor for waste gas treatment. Biotechnol Bioeng 45:107–115CrossRefGoogle Scholar
  44. Reij MW, Hamann EK, Hartmans S (1997) Biofiltration of air containing low concentrations of propene using a membrane bioreactor. Biotechnol Prog 13:380–386CrossRefGoogle Scholar
  45. Reij MW, Keurentjes JTF, Hartmans S (1998) Membrane bioreactors for waste gas treatment. J Biotechnol 59:155–167CrossRefGoogle Scholar
  46. Resier M, Fischer K, Engesser KH (1994) Kombination aus Biowascher-und Biomembranverfahren zur Reinigung von Abluft und hydrophilen und hydrophoben Inhaltsstoffen. VDI Ber 1104:103Google Scholar
  47. Semmens MJ, Qin R, Zander A (1989) Using a microporous hollow-fiber membrane to separate VOCs from water. J Am Water Works Assoc 81:162–167Google Scholar
  48. Yang M, Cussler EL (1986) Designing hollow-fiber contactors. AIChE J 32:1910–1916CrossRefGoogle Scholar
  49. Yeom CK, Kim HK, Rhim JW (1999) Removal of trace VOCs from water through PDMS membranes and analysis of their permeation behaviors. J Appl Polym Sci 73:601–611CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mark W. Fitch
    • 1
  1. 1.Department of Civil, Architectural and Environmental EngineeringUniversity of Missouri-RollaRollaUSA

Personalised recommendations