Advertisement

Bioscrubber Technology

  • Ajay Singh
  • Zarook Shareefdeen
  • Owen P. Ward
Chapter
  • 2.7k Downloads

Keywords

Activate Sludge Wastewater Treatment Plant Powdered Activate Carbon Odor Control Waste Management Association 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowker RPG (2000) Biological odor control by diffusion into activated sludge basin. Water Sci Technol 41:127–132Google Scholar
  2. Buisman CJN, Dijkman H, Prins W, Verbraak P, den Hartog H (1994) Biological (flue) gas desulfurization. Lucht 11:135–137Google Scholar
  3. Buisman CJN, Sorokin DY, Kuenen JG, Janssen AJH, Robertson LA (2000) Process for purification of gasses containing hydrogen sulphide. US Patent no 6,156,205Google Scholar
  4. Burgess JE, Parsons SA, Stuetz RM (2001) Development in odor control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63CrossRefGoogle Scholar
  5. Cetinkaya B, Sahlin RK, Abma WR, Dijkman H, Meyer SF, Kampeter SM (2000) Control FCC flu-gas emission. Hyrocarb Process 79:55–62Google Scholar
  6. Cho K-S, Hirai M, Shoda M (1992) Degradation of hydrogen sulfide by Xanthomonassp. strain DY44 isolated from peat. Appl Environ Microbiol 58:1183–1189Google Scholar
  7. Comas J, Balaguer M, Poch M, Rigola M (1999) Pilot plant evaluation for hydrogen sulfide biological treatment: determination of optimal conditions linking experimental and mathematical modeling. Environ Technol 20:53–59Google Scholar
  8. Croonenberghs J, Varani F, Le Fevre P (1994) Use of bioscrubbing to control ethanol emissions. In: Proc Air & Waste Management Association 87th Annu Meet, 19–24 June 1994, Cincinnati, pp 1–7Google Scholar
  9. DeHollander GR, Overcamp TJ, Grady CPL Jr (1998) Performance of a suspended-growth bioscrubber for the control of methanol. J Air Waste Manage 48:872–876Google Scholar
  10. Deziel E, Comeau Y, Villemeur R (1999) Two-liquid phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation 10:219–233CrossRefGoogle Scholar
  11. Diehl B, Schafer-Treffenfeldt W (1997) Biowäscheraufbauverfahrensvarianten und Betriebserfahrungen mit einem neuen Biowäscherkonzept. In: Prins WL, van Ham J (eds) Proc Int Symp Biological Waste Gas Cleaning. VDI, Duesseldorf, pp 345–352Google Scholar
  12. Dijkman H (1995) Biological gas desulfurization. Med Fac Lanbouw, University Ghent 60/4b, pp 2677–2684Google Scholar
  13. Edwards FG, Nirmalakhandan N (1996) Biological treatment of airstreams contaminated with VOCs: an overview. Water Sci Technol 34:565–571CrossRefGoogle Scholar
  14. Edwards FG, Nirmalakhandan N (1999) Modeling an airlift bioscrubber for removal of air-phase BTEX. J Environ Eng 125:1062–1070CrossRefGoogle Scholar
  15. Einrasen AM, Esoy A, Rasmussen A-I, Bungum S, Sveberg M (2000) Biological prevention and removal of hydrogen sulfide in sludge at Lillehammer wastewater treatment plant. Water Sci Technol 41:175–187Google Scholar
  16. Fox P, Venkatsubbiah V (1996) Coupled anaerobic/aerobic treatment of high-sulfate wastewater with sulfate reduction and biological sulfide oxidation. Water Sci Technol 34:359–366CrossRefGoogle Scholar
  17. Granström T, Lindberg P, Nummela J, Jokela J, Leisola M (2002) Biodegradation of VOCs from printing press air by an on-site pilot plant bioscrubber and laboratory scale continuous yeast cultures. Biodegradation 13:155–162CrossRefGoogle Scholar
  18. Hammervold RE, Overcamp TJ, Smets BF, Grady CPL Jr (1995) Experimental study of the sorptive slurry bioscrubber for acetone emissions. In: Proc Air & Waste Management Association 88th Annu Meet, 18–23 June 1995, San Antonio, pp 1–14Google Scholar
  19. Hammervold RE, Overcamp TJ, Grady CPL Jr, Smets BF (2000) A sorptive slurry bioscrubber for the control of acetone. J Air Waste Manage Assoc 50:954–960Google Scholar
  20. Hansen NG (1998) Odor’s biological option. Water Qual Int July/August, pp 12–14Google Scholar
  21. Hansen NG, Rindel K (2000) Bioscrubbing, an effective and economic solution to odor control at wastewater treatment plants. Water Sci Technol 41:155–164Google Scholar
  22. Hansen NG, Rindel K (2001) Bioscrubber for treating waste gases from wastewater treatment plants. In: Kennes C, Veiga MC (eds) Bioreactors for waste gas treatment, Kluwer, Dordrecht, pp 285–298Google Scholar
  23. Hecht V, Brebbermann D, Bremer P, Deckwer W-D (1995) Cometabolic degradation of trichloroethylene in a bubble column bioscrubber. Biotechnol Bioeng 47:461–469CrossRefGoogle Scholar
  24. Humeau P, Baleo J-N, Reynaud F, Bourcier J, Le Cloirec P (2000) Flow characterization in a gas-liquid column: application to a bioscrubber for the deodorization of waste gases. Water Sci Technol 41:191–198Google Scholar
  25. Hvidtfeldt Rasmussen H, Hansen NG, Rindel K (1994) Treatment of odorous nitrogen compounds in a bioscrubber comprising simultaneous nitrification and denitrification. VDI Ber 1104:491–497Google Scholar
  26. Janssen AJH, Buisman CJN (2001) Process for biological removal of sulphide. US Patent no 6,221,652Google Scholar
  27. Janssen AJH, de Hoop K, Buisman CJN (1997) The removal of H2S from air at a petrochemical plant. In: Prins WL, van Ham J (eds) Proc Int Symp Biological Waste Gas Cleaning. VDI, Duesseldorf, pp 359–364Google Scholar
  28. Janssen AJH, Dijkman H, Janssen G (2000) Novel biological processes for the removal of H2S and SO2 from the gas streams. In: Lens P, Hulshoff PL (eds) Environmental technologies to treat sulfur pollution. IWA, LondonGoogle Scholar
  29. Jensen AB, Webb C (1995) Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microb Technol 17:2–10CrossRefGoogle Scholar
  30. Joyce J, Sorensen H (1999) Bioscrubber design: how to improve odor-control flexibility and operational effectiveness. Water Environ Technol 11:37–44Google Scholar
  31. Kennes C, Thalasso F (1998) Waste gas biotreatment technology. J Chem Technol Biotechnol 72:303–319CrossRefGoogle Scholar
  32. Kim BW, Kim IK, Chang HN (1990) Bioconversion of hydrogen sulfide by free and immobilized cells of Chlorobium thiosulfatophilum. Biotechnol Lett 12:381–386CrossRefGoogle Scholar
  33. Koe LCC, Yang F (2000) A bioscrubber for hydrogen sulfide removal. Water Sci Technol 41:141–145Google Scholar
  34. Kohl AL, Nielsen RB (1997) Gas purification, 5th edn. Gulf, HoustonGoogle Scholar
  35. Kok HJG (1992) Bioscrubbing of air contaminated with high concentrations of hydrocarbons. In: Dragt AJ, van Ham J (eds) Biotechniques for air pollution abatement and odor control policies. Elsevier, Amsterdam, pp 77–82Google Scholar
  36. Le Cloirec P, Humeau P, Ramirez-Lopez EM (2001) Biotreatment of odors: control and performances of a biofilter and a bioscrubber. Water Sci Technol 44:219–226Google Scholar
  37. Nishimura S, Yoda M (1997) Removal of hydrogen sulfide from an anaerobic biogas using a bioscrubber. Water Sci Technol 36:349–356CrossRefGoogle Scholar
  38. Nurul Islam AKM, Hanaki K, Matsuo T (1998) Fate of dissolved odorous compounds in sewage treatment plants. Water Sci Technol 38:337–344CrossRefGoogle Scholar
  39. Ockeloen HF, Overcamp TJ, Grady CPL Jr (1996) Engineering model for fixed-film bioscrubbers. J Environ Eng 122:191–197CrossRefGoogle Scholar
  40. Ottengraf SPP (1987) Biological systems for waste gas elimination. Trends Biotechnol 5:132–136CrossRefGoogle Scholar
  41. Ottengraf SPP, Diks RMM (1992) Process technology of biotechniques. In: Dragt AJ, van Ham J (eds) Biotechniques for air pollution abatement and odor control policies. Elsevier, Amsterdam, pp 17–32Google Scholar
  42. Overcamp TJ, Chang H-C, Grady CPL Jr (1993) An integrated theory for suspended-growth bioscrubbers. Air Waste 43:753–759Google Scholar
  43. Pagella C, De Faveri DM (2000) H2S gas treatment by iron bioprocess. Chem Eng Sci 55:2185–2194CrossRefGoogle Scholar
  44. Parker WJ, Collins J, Wells J, Kennedy K (1998) Biological treatment of air streams containing chlorinated organic compounds. In: Proc Air & Waste Management Association 91st Annu Meet, 14–18 June 1998, San DiegoGoogle Scholar
  45. Schippert E (1994) Biowaeschertechnologie. VDI Ber 1104:39–56Google Scholar
  46. Shareefdeen ZM, Baltzis BC (1994) Biological removal of hydrophobic solvent vapors from airstreams. In: Galindo E, Ramirez T (eds) Advances in bioprocess engineering. Kluwer, Dordrecht, pp 397–404Google Scholar
  47. Shareefdeen ZM, Herner B, Webb D, Polenek S, Wilson S (2002) Removing volatile organic compound (VOC) emissions from a printed circuit board manufacturing facility using pilot-and commercial-scale biofilters. Environ Prog 21: 196–201CrossRefGoogle Scholar
  48. Sipma J, Janssen AJH, Hulshoff Pol LW, Lettinga G (2003) Development of a novel process for the biological conversion of H2S and methanethiol to elemental sulfur. Biotechnol Bioeng 44:1–11CrossRefGoogle Scholar
  49. Sublete KL, Kolhatkar R, Raterman K (1998) Technological aspects of the microbial treatmentof sulfide-rich wastewater: a case study. Biodegradation 9:259–271CrossRefGoogle Scholar
  50. van Groenestijn JW (2001) Bioscrubbers. In: Kennes C, Veiga MC (eds) Bioreactors for waste gas treatment. Kluwer, Dordrecht, pp 133–162Google Scholar
  51. van Groenestijn JW, Hesselink PGM (1993) Biotechniques for air pollution control. Biodegradation 4:283–301CrossRefGoogle Scholar
  52. van Groenestijn JW, van Harkes MP, Baartmans RFW (1997) A novel bioscrubber for the removal of ammonia from off gases. In: Prins WL, van Ham J (eds) Proc Int Symp Biological Waste Gas Cleaning. VDI, Düsseldorf, pp 305–312Google Scholar
  53. VDI/DIN (1996) VDI/DIN-Handbuch Reinhaltung der Luft, vol 6. Biological waste gas purification (VDI 3478). VDI, DüsseldorfGoogle Scholar
  54. Ward OP (1989) Fermentation biotechnology. Open University Press, Milton Keynes, UKGoogle Scholar
  55. Wübker S-M, Friedrich CG (1996) Reduction of biomass in a bioscrubber for waste gas treatment by limited supply of phosphate and potassium ions. Appl Microbiol Biotechnol 46:475–480CrossRefGoogle Scholar
  56. Wübker S-M, Laurenzis A, Werner U, Friedrich CG (1997) Controlled biomass formation and kinetics of toluene degradation in a bioscrubber and in a reactor with a periodically moved trickle-bed. Biotechnol Bioeng 55:686–692CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ajay Singh
    • 1
  • Zarook Shareefdeen
    • 2
  • Owen P. Ward
    • 3
  1. 1.Petrozyme TechnologiesGuelphCanada
  2. 2.BIOREM TechnologiesGuelphCanada
  3. 3.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations