Advertisement

Microbiology of Bioreactors for Waste Gas Treatment

  • Ajay Singh
  • Owen Ward
Chapter

Keywords

Terminal Restriction Fragment Length Polymorphism Scedosporium Apiospermum Chlorobium Limicola Benzylsuccinic Acid Molecular Weight Biosurfactants 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizpuru A, Malhautier L, Roux JC, Fanlo JL (2001) Biofiltration of a mixture of volatile organic emissions. J Air Waste Manage Assoc 51:1662–1670Google Scholar
  2. Arnold M, Reittu A, von Wright A, Martikainen PJ, Sihko M-L (1997) Bacterial degradation of styrene in waste gases using a peat filter. Appl Microbiol Biotechnol 48:738–744CrossRefGoogle Scholar
  3. Arp DJ, Sayavedra-Soto LA, Hommes NG (2002) Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch Microbiol 178:250–255CrossRefGoogle Scholar
  4. Bohn HL (1992) Considering biofiltration for decontaminating gases. Chem Eng Prog 88:34–40Google Scholar
  5. Braun-Lüllemann A, Aajcherczyk A, Hüttermann A (1997) Degradation of styrene by white-rot fungi. Appl Microbiol Biotechnol 47:150–155CrossRefGoogle Scholar
  6. Burgess JE, Parsons SA, Stuetz RM (2001) Development in odor control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63CrossRefGoogle Scholar
  7. Cho K-S, Hirai M, Shoda M (1992) Degradation of hydrogen sulfide by Xanthomonassp. strain DY44 isolated from peat. Appl Environ Microbiol 58:1183–1189Google Scholar
  8. Christen P, Domenech F, Michelena G, Auria R, Revah S (2002) Biofiltration of volatile ethanol using sugar cane bagasse inoculated with Candida utilis. J Hazard Mater 89:253–265CrossRefGoogle Scholar
  9. Chung YC, Huang C, Tseng CP (1997) Biotreatment of ammonia from air by an immobilized Arthrobacter oxydans CH8 biofilter. Biotechnol Prog 13:794–798CrossRefGoogle Scholar
  10. Chung YC, Huang C, Liu CH, Bai H (2001) Biotreatment of hydrogen sulfide and ammonia containing waste gases by fluidized bed bioreactor. J Air Waste Manage Assoc 51:163–172Google Scholar
  11. Costerton JW, Lewandowski Z, de Beer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized microniche. J Bacteriol 176:2137–2142Google Scholar
  12. Costerton JW, Lewandowski Z, Caldwell DE, Korber D, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745CrossRefGoogle Scholar
  13. Cox H, Deshusses MA (1999) Biomass control in waste air biotrickling filters by protozoan predation. Biotechnol Bioeng 62:216–224CrossRefGoogle Scholar
  14. Cox H, Moerman RE, van Baalen S, van Heiningen WNM, Doddema HJ, Harder W (1997) Performance of a styrene-degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnol Bioeng 53:259–266CrossRefGoogle Scholar
  15. Cox H, Sexton T, Shareefdeen Z, Deshusses M (2001) Thermophilic biotrickling filtration of ethanol vapors. Environ Sci Technol 35:2612–2619CrossRefGoogle Scholar
  16. Datta I, Fulthorpe R, Allen DG (2004) High temperature biofiltration of H2S. In: Proc Air and Water Management Association Conf, 22–25 June 2004, Indianapolis, INGoogle Scholar
  17. DeBeer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structure on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1138CrossRefGoogle Scholar
  18. Deshusses M, Johnson C (2000) Development and validation of a simple protocol to rapidly determine the performance of biofilters for VOC treatment. Environ Sci Technol 34:461–467CrossRefGoogle Scholar
  19. Devinny JS, Deshusses MA, Webster TS (1999) Biofiltration for air pollution control. Lewis, Boca RatonGoogle Scholar
  20. Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152CrossRefGoogle Scholar
  21. Elvers KT, Lappin-Scott HM (2000) Biofilms and biofouling. Encyclopedia of microbiology, vol 1, 2nd edn. Academic Press, San Diego, pp 471–485Google Scholar
  22. Engesser KH, Plaggemeir T (2000) Microbiological aspects of biological waste gas purification. In: Rehm H-J, Reed G (eds) Biotechnology, vol 11C, 2nd edn. Wiley/VCH, Weinheim, pp 275–302Google Scholar
  23. Ergas SJ, Kinney K, Fuller ME, Scow KM (1994) Characterization of a compost biofiltration system degrading dichloromethane. Biotechnol Bioeng 44:1048–1054CrossRefGoogle Scholar
  24. Ergas SJ, Schroeder ED, Chang DPY, Morton RL (1995) Control of volatile organic compound emission using a compost biofilter. Water Environ Res 67:816–821Google Scholar
  25. Friedrich U, Naismith MM, Altendorf K, Lipski A (1999) Community analysis of biofilters using fluorescence in situ hybridization including a new probe for the Xanthomonas branch of the class Proteobacteria. Appl Environ Microbiol 65:3547–3554Google Scholar
  26. García-Peña I, Hernández S, Auria R, Favela E, Revah S (2001) Biofiltration of toluene by the fungus Scedosporium apiospermum. Biotechnol Bioeng 76:61–69CrossRefGoogle Scholar
  27. Gieg LM, Suflita JM (2002) Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ Sci Technol 36:3755–3762CrossRefGoogle Scholar
  28. Granström T, Lindberg P, Nummela J, Jokela J, Leisola M (2002) Biodegradation of VOCs from printing press air by an on-site pilot plant bioscrubber and laboratory scale continuous yeast cultures. Biodegradation 13:155–162CrossRefGoogle Scholar
  29. Grommen R, Verstraete W (2002) Environmental biotechnology: the ongoing quest. J Biotechnol 98:113–123CrossRefGoogle Scholar
  30. Harayama S (2001) Environmental biotechnology. Curr Opin Biotechnol 12:229–230CrossRefGoogle Scholar
  31. Hubert C, Shen Y, Voordouw G (1999) Composition of toluene-degrading microbial communities from soil at different concentrations of toluene. Appl Environ Microbiol 65:3064–3070Google Scholar
  32. Janssen AJH, Buisman CJN (2001) Process for biological removal of sulphide. US patent no 6,221,652Google Scholar
  33. Jensen AB, Webb C (1995) Treatment of H2S-containing gases: a review of microbiological alternatives. Enzyme Microb Technol 17:2–10CrossRefGoogle Scholar
  34. Johri AK, Dua M, Singh A, Sethunathan N, Legge RL (1999) Characterization and regulation of catabolic genes. Crit Rev Microbiol 25:245–273CrossRefGoogle Scholar
  35. Juneson C, Ward OP, Singh A (2001) Microbial treatment of styrene contaminated air stream in a biofilter with high elimination capacities. J Ind Microbiol Biotechnol 26:196–202CrossRefGoogle Scholar
  36. Kennes C, Thalasso F (1998) Waste gas biotreatment technology. J Chem Technol Biotechnol 72:303–319CrossRefGoogle Scholar
  37. Kennes C, Veiga C (2001) Conventional biofilters. In: Kennes C, Veiga C (eds) Bioreactors for waste gas treatment. Kluwer, Dordrecht, pp 47–98Google Scholar
  38. Kim BW, Kim IK, Chang HN (1990) Bioconversion of hydrogen sulfide by free and immobilized cells of Chlorobium thiosulfatophilum. Biotechnol Lett 12:381–386CrossRefGoogle Scholar
  39. Kim NJ, Sugano Y, Hirai M, Shoda M (2000) Removal characteristics of high load ammonia gas by a biofilter seeded with a marine bacterium, Vibrio alginolyticus. Biotechnol Lett 22:1295–1299CrossRefGoogle Scholar
  40. Kirchner K, Hauk G, Rehm H-J (1987) Exhaust gas purification using immobilized monocultures (biocatalysts). Appl Microbiol Biotechnol 26:579–587CrossRefGoogle Scholar
  41. Kong Z, Farhana L, Fulthorpe R, Allen DG (2001) Treatment of volatile organic compounds in a biotrickling filter under thermophilic conditions. Environ Sci Technol 35:4347–4352CrossRefGoogle Scholar
  42. Lappin-Scott HM, Costerton JW (1995) Microbial biofilms. Cambridge University Press, CambridgeGoogle Scholar
  43. Lee DH, Lau AK, Pinder KL (2001) Development and performance of an alternative biofilter system. J Air Waste Manage Assoc 51:78–85Google Scholar
  44. Lu C, Chu W, Lin MR (2000) Removal of BTEX vapor from waste gases by a trickle bed biofilter. J Air Waste Manage Assoc 50:411–417Google Scholar
  45. Mallakin A, Ward OP (1996) Degradation of BTEX compounds in liquid media and in peat biofilters inoculated with cultures isolated from gasoline contaminated peat. J Ind Microbiol 16:309–318CrossRefGoogle Scholar
  46. McGrath MS, Nieuwland J-C, van Lith C (1999) Case study: biofiltration of styrene and butylacetate at a dashboard manufacturer. Environ Prog 18:197–204CrossRefGoogle Scholar
  47. Min K-N, Ergas SJ, Harrison JM (2002) Hollow-fiber membrane bioreactor for nitric oxide removal. Environ Eng Sci 19:575–583CrossRefGoogle Scholar
  48. Monod J (1942) Recherches sur la croissance des cultures bactériennes. Hermann et Cie, ParisGoogle Scholar
  49. Morikawa H, Erkin OC (2003) Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52:1553–1558CrossRefGoogle Scholar
  50. Nagase H, Yoshihara K-I, Eguchi K, Yokota Y, Matsui R, Hirata K, Miyamato K (1997) Characteristics of biological NOx removal from flue gas in a Dunaliella tertiolecta system. J Ferment Bioeng 83:461–465CrossRefGoogle Scholar
  51. Oh YS, Choi SC, Kim YK (1998) Degradation of gaseous BTX by filtration with Phaneroxhaete chrysosporium. J Microbiol 36:34–38Google Scholar
  52. Parales RE, Bruce NC, Schmid A, Wackett LP (2002) Biodegradation, biotrans-formation and biocatalysis. Appl Environ Microbiol 68:4699–4709CrossRefGoogle Scholar
  53. Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270CrossRefGoogle Scholar
  54. Reusser DE, Istok JD, Beller HR, Field JA (2002) In situ transformation of deutered toluene and xylene to benzylsuccinic acid analogues in BTEX-contaminated aquifers. Environ Sci Technol 36:4127–4134CrossRefGoogle Scholar
  55. Rosenberg E, Ron EZ (1999) High-and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162CrossRefGoogle Scholar
  56. Sakano Y, Kerkhof L (1998) Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools. Appl Environ Microbiol 64:4877–4882Google Scholar
  57. Satoh H, Yoshizawa J, Kamentani S (1988) Bacteria help desulfurize gas. Hydrocarb Proc Int Edn 76:76D–76FGoogle Scholar
  58. Shareefdeen Z, Baltzis BC, Oh YS, Bartha R (1993) Biofiltration of methanol vapor. Biotechnol Bioeng 41:512–524CrossRefGoogle Scholar
  59. Sipma J, Janssen AJH, Hulshoff Pol LW, Lettinga G (2003) Development of a novel process for the biological conversion of H2S and methanethiol to elemental sulfur. Biotechnol Bioeng 44:1–11CrossRefGoogle Scholar
  60. Sly LI, Bryant LJ, Cox JM, Anderson JM (1993) Development of a biofilter for the removal of methane from coal mine ventilation atmosphere. Appl Microbiol Biotechnol 39:400–404CrossRefGoogle Scholar
  61. Smet E, Van Langenhove H, Verstraete W (1997) Isobutaraldehyde as a competitor of the dimethyl sulfide degrading activity in biofilters. Biodegradation 8:53–59CrossRefGoogle Scholar
  62. Smets BF, Pritchard PH (2003) Elucidating the microbial component of natural attenuation. Curr Opin Biotechnol 14:283–288CrossRefGoogle Scholar
  63. Sologar VS, Lu Zijin, Allen DG (2003) Biofiltration of concentrated mixtures of hydrogen sulfide and methanol. Environ Prog 22:129–36CrossRefGoogle Scholar
  64. Speitel GE, McLay McLay DS (1993) Biofilm reactors for treatment of gas stream containing chlorinated solvents. J Environ Eng 119:658–678CrossRefGoogle Scholar
  65. Spingo G, Pagella C, Daria F, Molteni R, de Faveri M (2003) VOCs removal from waste gases: gas phase bioreactor for the abatement of hexane by Aspergillus niger. Chem Eng Sci 58:739–746CrossRefGoogle Scholar
  66. Stapleton RD, Ripp S, Jimenez L, Cheol-Koh S, Fleming JT, Gregory IR, Sayler GS (1998) Nucleic acid analytical approaches in bioremediation: site assessment and characterization. J Microbiol Methods 32:165–178CrossRefGoogle Scholar
  67. Stepanov AL, Korpela TK (1997) Microbial basis for the biotechnological removal of nitrogen from flue gases. Biotechnol Appl Biochem 25:97–104Google Scholar
  68. Theron J, Cloete TE (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 26:37–57CrossRefGoogle Scholar
  69. Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269CrossRefGoogle Scholar
  70. Van der Meer JR, Senchilo V (2003) Genomic islands and the evolution of catabolic pathways in bacteria. Curr Opin Biotechnol 14:248–254CrossRefGoogle Scholar
  71. Van Elsas JD, Duarte GF, Rosado AS, Smalla K (1998) Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. J Microbiol Methods 32:133–154CrossRefGoogle Scholar
  72. Van Groenestijn JW (2001) Bioscrubbers. In: Kennes C, Veiga MC (eds) Bioreactors for waste gas treatment. Kluwer, Dordrecht, pp 133–162Google Scholar
  73. Van Groenestijn JW, Hesselink PGM (1993) Biotechniques for air pollution control. Biodegradation 4:283–301CrossRefGoogle Scholar
  74. Van Groenestijn JW, Liu JX (2002) Removal of alpha-pinene from gases using biofilters containing fungi. Atmos Environ 36:5501–5508CrossRefGoogle Scholar
  75. Van Hamme J, Ward OP (1999) Influence of chemical surfactants on the biodegradation of crude oil by a mixed bacterial culture. Can J Microbiol 45:130–137CrossRefGoogle Scholar
  76. Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 7:503–549CrossRefGoogle Scholar
  77. Veiga MC, Kennes C (2001) Parameters affecting performance and modeling of biofilters treating alkylbenzene-polluted air. Appl Microbiol Biotechnol 55:254–258CrossRefGoogle Scholar
  78. Veir JK, Schroeder ED, Chang DPY, Scow KM (1996) Interaction between toluene and dichloromethane degrading populations in a compost biofilter. In: Proc 89th Annu Meet Exhibition Air and Waste Management Association, Tennessee, Pap 96-WP87A.07Google Scholar
  79. Wackett LP, Hershberger CD (2001) Biocatalysis and biodegradation: microbial transformation of organic compounds. ASM Press, Washington, DC, pp 39–69Google Scholar
  80. Ward OP, Singh A, van Hamme J (2003) Accelerated biodegradation of petroleum hydrocarbon waste. J Ind Microbiol Biotechnol 30:260–270CrossRefGoogle Scholar
  81. Watanabe K (2001) Microorganisms relevant to bioremediation. Curr Opin Biotechnol 12:237–241CrossRefGoogle Scholar
  82. Watanabe K, Hamamura N (2003) Molecular and physiological approaches to understanding the ecology of pollutant degradation. Curr Opin Biotechnol 14:289–295CrossRefGoogle Scholar
  83. Widada J, Nojiri H, Omori T (2002) Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl Microbiol Biotechnol 60:45–59CrossRefGoogle Scholar
  84. Woertz JR, Kinney KA, Szaniszlo PJ (2001) A fungal vapor-phase bioreactor for the removal of nitric oxide from waste gas streams. J Air Waste Manage Assoc 51:895–902Google Scholar
  85. Wübker S-M, Friedrich CG (1996) Reduction of biomass in a bioscrubber for waste gas treatment by limited supply of phosphate and potassium ions. Appl Microbiol Biotechnol 46:475–480CrossRefGoogle Scholar
  86. Yoshihara K-I, Nagase H, Eguchi K, Hirata K, Miyamato K (1996) Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalgae NOA-113 cultivatedin a long tubular photobioreactor. J Ferment Bioeng 82:351–354CrossRefGoogle Scholar
  87. Zhang TC, Fu Y-C, Bishop PL (1995) Competition for substrates and space in biofilms. Water Environ Res 67:992–1003Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ajay Singh
    • 1
  • Owen Ward
    • 2
  1. 1.Petrozyme TechnologiesGuelphCanada
  2. 2.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations