Skip to main content

Coronary Artery Disease

  • Chapter
Clinical Cardiac MRI

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achenbach S (2004) Detection of coronary stenoses by multi-detector computed tomography: it’s all about resolution. J Am Coll Cardiol 43:840–841

    Article  PubMed  Google Scholar 

  • Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W (2000) In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology 216:457–463

    PubMed  Google Scholar 

  • Achenbach S, Moselewski F, Ropers D et al (2004a) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, sub-millimetre multidetector spiral computed tomography. A segment-based comparison with intravascular ultrasound. Circulation 109:14–17

    PubMed  Google Scholar 

  • Achenbach S, Ropers S, Hoffmann U et al (2004b) Assessment of coronary remodelling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol 43:842–847

    Article  PubMed  Google Scholar 

  • Angelini P (1989) Normal and anomalous coronary arteries: definitions and classification. Am Heart J 117:418–434

    Article  PubMed  Google Scholar 

  • Anné W, Bogaert J, van de Werf F (2000) A case report of a patient with a large aneurysmatic coronary artery fistula. Acta Cardiol 55:307–310

    PubMed  Google Scholar 

  • Atkinson D, Edelman R (1991) Cineangiography of the heart in a single breathhold with a segmented TurboFLASH sequence. Radiology 178:359–362

    Google Scholar 

  • Aurigemma GP, Reichek N, Axel L, Schiebler M, Harris C, Kressel HY (1989) Noninvasive determination of coronary artery bypass graft patency by cine magnetic resonance imaging. Circulation 80:1595–1602

    PubMed  Google Scholar 

  • Austen WG, Edwards JE, Frye RL et al (1975) A reporting system on patients evaluated for coronary artery disease: report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council in Cardiovascular Surgery, American Heart Association. Circulation 51:5–40

    PubMed  Google Scholar 

  • Azhari H, McKenzie CA, Edelman RR (2001) MR angiography using spin-lock flow tagging. Magn Reson Med 46:1041–1044

    Article  PubMed  Google Scholar 

  • Balaban RS, Chesnick S, Hedges K, Samaha F, Heineman FW (1991) Magnetization transfer contrast in MR imaging of the heart. Radiology 180:671–675

    PubMed  Google Scholar 

  • Becker CR, Knez A, Ohnesorge B et al (2000) Visualization and quantification of coronary calcifications with electron beam and spiral computed tomography. Eur Radiol 10:629–635

    Article  PubMed  Google Scholar 

  • Becker CR, Knez A, Leber A et al (2002) Detection of coronary artery stenoses with multi-slice helical CT angiography. J Comput Assist Tomogr 26:750–755

    Article  PubMed  Google Scholar 

  • Bedaux WL, Hofman MBM, Visser CA, van Rossum AC (2001) Simultaneous noninvasive measurement of blood flow in the great cardiac vein and left anterior descending artery. J Cardiovasc Magn Reson 3:227–235

    Article  PubMed  Google Scholar 

  • Bedaux WL, Hofman MB, Wielopolski PA et al (2002a) Three-dimensional magnetic resonance coronary angiography using a new blood pool contrast agent: initial experience. J Cardiovasc Magn Reson 4:273–282

    PubMed  Google Scholar 

  • Bedaux WL, Hofman MBM, Vyt SLA, Bronzwaer JGF, Visser CA, van Rossum AC (2002b) Assessment of coronary artery bypass graft disease using cardiovascular magnetic resonance determination of flow reserve. J Am Coll Cardiol 40:1848–1855

    Article  PubMed  Google Scholar 

  • Bogaert J, Duerinckx A (1995) Appearance of the normal pericardium on coronary MR angiograms. J Magn Reson 5:579–587

    PubMed  Google Scholar 

  • Bogaert J, Kuzo S, Dymarkowski S, Becker R, Piessens J, Rademakers FE (2003) Coronary artery imaging using real-time navigator 3D Turbo-field-echo MR coronary angiography technique. Initial experience. Radiology 226:707–716

    PubMed  Google Scholar 

  • Börnert P, Jensen D (1995) Coronary artery imaging at 0.5T using segmented 3D echo planar imaging. Magn Reson Med 34:779–785

    PubMed  Google Scholar 

  • Börnert P, Aldefeld B, Nehrke K (2001a) Improved 3D spiral imaging for coronary MR angiography. Magn Reson Med 45:172–175

    Article  PubMed  Google Scholar 

  • Börnert P, Stuber M, Botnar RM et al (2001b) Direct comparison of 3D spiral vs Cartesian gradient-echo coronary magnetic resonance angiography. Magn Reson Med 46:789–794

    Article  PubMed  Google Scholar 

  • Börnert P, Stuber M, Botnar RM, Kissinger KV, Manning WJ (2002) Comparison of fat suppression strategies in 3D spiral coronary magnetic resonance angiography. J Magn Reson Imaging 15:462–466

    Article  PubMed  Google Scholar 

  • Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ (1999a) Improved coronary artery definition with T2-weighted free-breathing, three-dimensional coronary MRA. Circulation 99:3139–3148

    PubMed  Google Scholar 

  • Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ (1999b) A fast 3D approach for coronary MRA. J Magn Reson Imaging 10:821–825

    Article  PubMed  Google Scholar 

  • Botnar RM, Stuber M, Kissinger KV, Manning WJ (2000a) Free-breathing 3D coronary MRA: the impact of “isotropic” image resolution. J Magn Reson Imaging 11:389–393

    Article  PubMed  Google Scholar 

  • Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ (2000b) Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 102:2582–2587

    PubMed  Google Scholar 

  • Botnar RM, Kim WY, Börnert P, Stuber M, Spuentrup E, Manning WJ (2001) 3D Coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magn Reson Med 46:848–854

    Article  PubMed  Google Scholar 

  • Botnar RM, Stuber M, Lamericks R et al (2003) Initial experiences with in vivo RCA human MR vessel wall imaging at 3 Tesla. J Cardiovasc Magn Reson 5:589–594

    Article  PubMed  Google Scholar 

  • Bourassa MG (1994) Long-term vein graft patency. Curr Opin Cardiol 9:685–691

    PubMed  Google Scholar 

  • Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG (1995) Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med 33:689–696

    PubMed  Google Scholar 

  • Budoff MJ, Achenbach S, Duerinckx A (2003) Clinical utility of computed tomography and magnetic resonance techniques for noninvasive coronary angiography. J Am Coll Cardiol 42:1867–1878

    PubMed  Google Scholar 

  • Bunce NH, Pennell DJ (1999) Coronary MRA — a clinical experience in Europe. J Magn Reson Imag 10:721–727

    Article  Google Scholar 

  • Bunce NH, Jhooti P, Keegan J et al (2001a) Evaluation of free-breathing three-dimensional magnetic resonance coronary angiography with hybrid ordered phase encoding (HOPE) for the detection of proximal coronary artery stenosis. J Magn Reson Imaging 14:677–684

    Article  PubMed  Google Scholar 

  • Bunce NH, Rahman SL, Keegan J, Gatehouse PD, Lorenz CH, Pennell DJ (2001b) Anomalous coronary arteries: anatomic and functional assessment by coronary and perfusion cardiovascular magnetic resonance in three sisters. J Cardiovasc Magn Reson 3:361–369

    Article  PubMed  Google Scholar 

  • Bunce NH, Lorenz CH, John AS, Lesser JR, Mohiaddin RH, Pennell D (2003a) Coronary artery bypass graft patency: assessment with true fast imaging with steady-state precession versus Gadolinium-enhanced MR angiography. Radiology 227:440–446

    PubMed  Google Scholar 

  • Bunce NH, Lorenz CH, Keegan J et al (2003b) Coronary artery anomalies: assessment with free-breathing three-dimensional coronary MR angiography. Radiology 227:201–208

    PubMed  Google Scholar 

  • Burstein D (1991) MR imaging of coronary artery flow in isolated and in-vivo hearts. J Magn Reson Imaging 1:337–346

    PubMed  Google Scholar 

  • Butts K, Riederer SJ (1992) Analysis of flow effects in echoplanar imaging. J Magn Reson Imaging 1:643–650

    Google Scholar 

  • Carr J, Simonetti O, Bundy J, Li D, Pereles S, Finn JP (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834

    PubMed  Google Scholar 

  • Celermajer DS (1998) Noninvasive detection of atherosclerosis. N Engl J Med 339:2014–2015

    Article  PubMed  Google Scholar 

  • Click RL, Holmes DR, Vliestra RE, Kosinski A, Kronmal RA (1989) Anomalous coronary arteries: location, degree of atherosclerosis and effect on survival — a report from the coronary artery surgery study. J Am Coll Cardiol 13:531–537

    PubMed  Google Scholar 

  • Chuang ML, Chen MH, Khasgiwala VC, McConnell MV, Edelman RR, Manning WJ (1997) Adaptive correction of imaging plane position in segmented κ-space cine cardiac MRI. J Magn Reson Imaging 7:811–814

    PubMed  Google Scholar 

  • Danias PG, McConnell MV, Khasgiwala VC, Chuang ML, Edelman RR, Manning WJ (1997) Prospective navigator correction of image position for coronary MR angiography. Radiology 203:733–736

    PubMed  Google Scholar 

  • Davies MJ (1996) Stability and instability: two faces of coronary atheromatosis. Circulation 94:2013–2020

    PubMed  Google Scholar 

  • Davis JA, Cecchin F, Jones TK, Portman MA (2001) Major coronary artery anomalies in a pediatric population: incidence and clinical importance. J Am Coll Cardiol 37:593–597

    Article  PubMed  Google Scholar 

  • Deshpande VS, Li D (2003) Contrast-enhanced coronary artery imaging using 3D trueFISP. Magn Reson Med 50:570–577

    Article  PubMed  Google Scholar 

  • Deshpande VS, Wielopolski PA, Shea SM, Carr J, Zheng J, Li D (2001a) Coronary artery imaging using contrast-enhanced 3D segmented EPI. J Magn Reson Imaging 13:676–681

    Article  PubMed  Google Scholar 

  • Deshpande VX, Shea SM, Laub G, Simonetti OP, Finn JP, Li D (2001b) 3D Magnetization-prepared true-FISP: a new technique for imaging coronary arteries. Magn Reson Med 46:494–502

    Article  PubMed  Google Scholar 

  • Deshpande VS, Chung Y-C, Zhang Q, Shea SM, Li D (2003) Reduction of transient signal oscillations in true-FISP using a linear flip angle series magnetization preparation. Magn Reson Med 49:151–157

    Article  PubMed  Google Scholar 

  • Desmet W, Vanhaecke J, Vrolix M et al (1992) Isolated single coronary artery: a review of 50000 consecutive coronary angiographies. Eur Heart J 13:1637–1640

    PubMed  Google Scholar 

  • Dirksen MS, Lamb HJ, Doornbos J, Bax JJ, Jukema KW, de Roos A (2003) Coronary magnetic resonance angiography: technical developments and clinical applications. J Cardiovasc Magn Reson 5:365–386

    Article  PubMed  Google Scholar 

  • Douard H, Barat JL, Mora B, Baudet E, Broustet JP (1988) Magnetic resonance imaging of an anomalous origin of the LCA from the pulmonary artery. Eur Heart J 9:1356–1360

    PubMed  Google Scholar 

  • Doyle M, Scheidegger MB, de Graaf RG, Vermeulen J, Pohost GM (1993) Coronary artery imaging in multiple 1-sec breath holds. Magn Reson Imaging 11:3–6

    Article  PubMed  Google Scholar 

  • Du YP, Parker DL, Davis WL et al (1994) Reduction of partial-volume artefacts with zero-filling interpolation in three-dimensional MR angiography. J Magn Reson Imaging 4:733–741

    PubMed  Google Scholar 

  • Duerinckx AJ, Urman M (1994) Two-dimensional coronary MR angiography: analysis of initial clinical results. Radiology 193:731–738

    PubMed  Google Scholar 

  • Duerinckx AJ, Bogaert J, Jiang H, Lewis BS (1995) Anomalous origin of the LCA: diagnosis by coronary MR angiography. AJR Am J Roentgenol 164:1095–1096

    PubMed  Google Scholar 

  • Duerinckx AJ, Troutman B, Allada V et al (1997) Coronary MR angiography in Kawasaki disease. AJR Am J Roentgenol 168:114–116

    PubMed  Google Scholar 

  • Duerinckx AJ, Atkinson D, Hurwitz R (1998) Assessment of coronary artery patency after stent placement using magnetic resonance angiography. J Magn Reson Imaging 8:896–902

    PubMed  Google Scholar 

  • Duerinckx AJ, Perloff JK, Currier JW (1999) Arteriovenous fistulas of the circumflex and right coronary arteries with drainage into an aneurysmal coronary sinus. Circulation 99:2827–2828

    PubMed  Google Scholar 

  • Duerinckx AJ, Shaaban, Lewis, A, Perloff J, Laks H (2000) 3D MR imaging of coronary arteriovenous fistulas. Eur Rad 10:1459–1463

    Article  Google Scholar 

  • Duerinckx AJ (ed) (2002) Coronary magnetic resonance angiography. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Edelman R, Manning W, Burstein D, Paulin S (1991) Coronary arteries: breath-hold MR angiography. Radiology 181:641–643

    PubMed  Google Scholar 

  • Edelman RR, Manning WJ, Gervino E, Li W (1993) Flow velocity quantification in human coronary arteries with fast breath-hold MR angiography. J Magn Reson Imaging 3:699–703

    PubMed  Google Scholar 

  • Ehman RL, Felmlee JP (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173:255–263

    PubMed  Google Scholar 

  • Etienne A, Botnar RM, van Muiswinkel AMC, Boesiger P, Manning WJ, Stuber M (2002) “Soap-Bubble” visualization and quantitative analysis of 3D coronary magnetic resonance angiograms. Magn Reson Med 48:658–666

    Article  PubMed  Google Scholar 

  • Faulkner K, Lover HG, Sweeney JK, Bardsley RA (1986) Radiation doses and somatic risk to patients during cardiac radiological procedures. Br J Radiol 59:359–363

    PubMed  Google Scholar 

  • Fayad ZA, Fuster V, Fallon JT et al (2000) Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 102:506–510

    PubMed  Google Scholar 

  • Fayad ZA, Fuster V, Nikolaou K, Becker C (2002) Computed tomography and magnetic resonance imaging for noninvasive coronary angiography and plaque imaging. Current and potential future concepts. Circulation 106:2026–2034

    PubMed  Google Scholar 

  • Ferrigno M, Hickey DD, Liner MH, Lundgren CEG (1986) Cardiac performance in humans during breath-holding. J Appl Physiol 60:1871–1877

    PubMed  Google Scholar 

  • Firmin D, Keegan J (2001) Navigator echoes in cardiac magnetic resonance. J Cardiovasc Magn Reson 3:183–193

    Article  PubMed  Google Scholar 

  • Fischer SE, Wickline SA, Lorenz CH (1999) Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gate magnetic resonance acquisitions. Magn Reson Med 42:361–370

    Article  PubMed  Google Scholar 

  • Flacke S, Setser RM, Barger P et al (2000) Coronary aneurysms in Kawasaki’s disease detected by magnetic resonance coronary angiography. Circulation 101:E516–E517

    Google Scholar 

  • Fleckenstein JL, Archer BT, Barker BA, Vaughan JT, Parkey RW, Peshock RM (1991) Fast short-tau inversion-recovery MR imaging. Radiology 179:499–504

    PubMed  Google Scholar 

  • Foo TKF, Perman WH, Poon CSO, Cusma JT, Sandstorm JC (1989) Projection flow imaging by bolus tracking using stimulated echoes. Magn Reson Med 9:203–218

    PubMed  Google Scholar 

  • Foo TKF, Ho VB, Hood MN (2000) Vessel tracking: prospective adjustment of section-selective MR angiographic locations for improved coronary artery visualization over the cardiac cycle. Radiology 214:283–289

    PubMed  Google Scholar 

  • Furber AP, Lethimonnier F, Le Jeun JJ et al (1999) Noninvasive assessment of the infarct-related coronary artery blood flow velocity using phase-contrast magnetic resonance imaging after coronary angioplasty. Am J Cardiol 84:24–30

    Article  PubMed  Google Scholar 

  • Fuster V (1994) Lewis A. Conner memorial lecture: mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 90:2126–2142

    PubMed  Google Scholar 

  • Fuster V, Gotto AM (2000) Risk reduction. Circulation 102: IV94–IV102

    PubMed  Google Scholar 

  • Fuster V, Fayad ZA, Badimon JJ (1999) Acute coronary syndromes: biology. Lancet 353:SII5–SII9

    Article  PubMed  Google Scholar 

  • Galjee MA, van Rossum AC, Doesburg T, van Eenige MJ, Visser CA (1996) Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts. Circulation 93:660–666

    PubMed  Google Scholar 

  • Garg N, Tewari S, Kapoor A, Gupta DK, Sinha N (2000) Primary congenital anomalies of the coronary arteries: a coronary arteriographic study. Int J Cardiol 74:39–46

    Article  PubMed  Google Scholar 

  • Gerber TC, Fasseas P, Lennon RJ et al (2003a) Clinical safety of magnetic resonance imaging early after coronary artery stent placement. J Am Coll Cardiol 42:1295–1298

    Article  PubMed  Google Scholar 

  • Gerber TC, Kuzo RS, Lane GE et al (2003b) Image quality in a standardized algorithm for minimally invasive coronary angiography with multislice spiral computed tomography. J Comput Assist Tomogr 27:62–69

    Article  PubMed  Google Scholar 

  • Giesler T, Baum U, Ropers D et al (2002) Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: influence of heart rate on image quality and stenosis detection. AJR Am J Roentgenol 170:911–916

    Google Scholar 

  • Giorgi B, Dymarkowski S, Maes F, Kouwenhoven M, Bogaert J (2002a) Improved visualization of coronary arteries using a new three-dimensional submillimetre MR coronary angiography sequence with balanced gradients. AJR Am J Roentgenol 179:901–910

    PubMed  Google Scholar 

  • Giorgi B, Dymarkowski S, Rademakers F, Lebrun F, Bogaert J (2002b) Single coronary artery as cause of acute myocardial infarction in a 12-year-old girl: a comprehensive approach with MRI. AJR-Am J Roentgenol 179:1535–1537

    PubMed  Google Scholar 

  • Glagov S, Weisenberg E, Zarins CK et al (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    PubMed  Google Scholar 

  • Goldfarb JW, Edelman RR (1998) Coronary arteries: breathhold gadolinium-enhanced, three-dimensional MR angiography. Radiology 206:830–834

    PubMed  Google Scholar 

  • Gomes A, Lois J, Drinkwater D, Corday S (1987) Coronary artery bypass grafts: visualization with MR imaging. Radiology 162:175–179

    PubMed  Google Scholar 

  • Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94

    Article  PubMed  Google Scholar 

  • Green JD, Omary RA, Finn JP et al (2003) Two-and three-dimensional MR coronary angiography with intraarterial injections of contrast agents in dogs: a feasibility study. Radiology 226:272–277

    PubMed  Google Scholar 

  • Greil GF, Stuber M, Botnar RM et al (2002) Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation 105:908–911

    Article  PubMed  Google Scholar 

  • Grundy SM, Pasternak R, Greenland P, Smith S, Fuster V (1999) Assessment of cardiovascular risk by use of mul-tiple-risk-factor assessment equations. A statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation 100:1481–1492

    PubMed  Google Scholar 

  • Haase A, Frahm J, Hänicke W, Matthaei D (1985) 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 4:341–344

    Article  Google Scholar 

  • Hardy CJ, Cline HE (1989) Broadband nuclear magnetic resonance pulses with two-dimensional spatial selectivity. J Appl Phys 66:1513–1520

    Article  Google Scholar 

  • Herborn CU, Barkhausen J, Paetsch I et al (2003) Coronary arteries: contrast-enhanced MR imaging with SH L 643A — experience in 12 volunteers. Radiology 229:217–223

    PubMed  Google Scholar 

  • Ho VB, Foo TKF, Arai AE, Wolff SD (2001) Gadolinium-enhanced, vessel-tracking, two-dimensional coronary MR angiography: single-dose arterial-phase vs. delayed phase imaging. J Magn Reson Imaging 13:682–689

    Article  PubMed  Google Scholar 

  • Hofman MBM, Paschal CB, Li D, Haacke M, van Rossum AC, Sprenger M (1995a) MRI of coronary arteries: 2D breath-hold vs 3D respiratory-gated acquisition. J Comput Assist Tomogr 19:56–62

    PubMed  Google Scholar 

  • Hofman MBM, Visser FC, van Rossum AC, Vink GQM, Sprenger M, Westerhof N (1995b) In vivo validation of magnetic resonance volume flow measurements with limited spatial resolution in small vessels. Magn Reson Med 33:778–784

    PubMed  Google Scholar 

  • Hofman MB, van Rossum AC, Sprenger M, Westerhof N (1996) Assessment of flow in the right human coronary artery by magnetic resonance phase contrast velocity measurement: effects of cardiac and respiratory motion. Magn Reson Med 35:521–531

    PubMed  Google Scholar 

  • Hofman MB, Wickline SA, Lorenz CH (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implication for acquisition window duration for MR flow quantification. J Magn Reson Imaging 8:568–576

    PubMed  Google Scholar 

  • Hofman MB, Henson RE, Kovacs SJ et al (1999) Blood pool contrast agent strongly improves 3D magnetic resonance coronary angiography using an inversion prepulse. Magn Reson Med 41:360–367

    Article  PubMed  Google Scholar 

  • Holland AE, Goldfarb JW, Edelman RR (1998) Diaphragmatic and cardiac motion during suspended breathing: preliminary experience and implications for breath-hold MR imaging. Radiology 209:483–489

    PubMed  Google Scholar 

  • Holsinger AE, Riederer SJ (1990) The importance of phase encoding order in ultra-short TR snapshot MR imaging. Magn Reson Med 16:481–488

    PubMed  Google Scholar 

  • Huber A, Nikolaou K, Gonschior P, Knez A, Stehling M, Reiser M (1999) Navigator echo-based respiratory gating for three-dimensional MR coronary angiography: results from healthy volunteers and patients with proximal coronary artery stenoses. AJR Am J Roentgenol 173:95–101

    PubMed  Google Scholar 

  • Huber ME, Hengesbach D, Botnar RM et al (2001) Motion artefact reduction and vessel enhancement for free-breathing navigator-gated coronary MRA using 3D κ-space reordering. Magn Reson Med 45:645–652

    Article  PubMed  Google Scholar 

  • Hug J, Nagel E, Bornstedt A, Schnackenburg B, Oswald H, Fleck E (2000) Coronary arterial stents: safety and artefacts during MR imaging. Radiology 216:781–787

    PubMed  Google Scholar 

  • Hundley WG, Hillis LD, Hamilton CA et al (2000) Assessment of coronary arterial stenosis with phase-contrast magnetic resonance imaging measurements of coronary flow reserve. Circulation 101:2375–2381

    PubMed  Google Scholar 

  • Hwang K-P, Green JD, Li D et al (2002) Minimizing contrast agent dose during intraarterial gadolinium-enhanced MR angiography: in vitro assessment. J Magn Reson Imaging 15:55–61

    Article  PubMed  Google Scholar 

  • Ishida N, Sakuma H, Cruz BP et al (2001) MR flow measurement in the internal mammary artery-to-coronary artery bypass graft: comparison with graft stenosis at radiographic angiography. Radiology 220:441–447

    PubMed  Google Scholar 

  • Jhooti P, Keegan J, Gatehouse PD et al (1999) 3D Coronary artery imaging with phase reordering for improved scan efficiency. Magn Reson Med 41:555–562

    Article  PubMed  Google Scholar 

  • Johansson LO, Fischer SE. Lorenz CH (1999) Benefit of T1 reduction for magnetic resonance coronary angiography: a numerical simulation and phantom study. J Magn Reson Imaging 9:552–556

    Article  PubMed  Google Scholar 

  • Joyce JD, Schulman DS, Lasorda D et al (1994) Intracoronary Doppler guide wire versus stress single-photon emission computed tomography thallium-201 imaging in assessment of intermediate coronary stenoses. J Am Coll Cardiol 24:940–947

    PubMed  Google Scholar 

  • Kalden P, Kreitner KF, Wittlinger T et al (1999) Assessment of coronary artery bypass grafts: value of different breath-hold MR imaging techniques. AJR Am J Roentgenol 172:1359–1364

    PubMed  Google Scholar 

  • Kato H, Sugimura T, Akagi T et al (1996) Long-term consequences of Kawasaki disease. A 10-to 21-year follow-up study of 594 patients. Circulation 94:1379–1385

    PubMed  Google Scholar 

  • Keegan J, Gatehouse PD, Taylor AM, Yang GZ, Jhooti P, Firmin DN (1999) Coronary artery imaging in a 0.5 Tesla scanner: implementation of real-time navigator echo controlled segmented κ-space FLASH and interleaved spiral sequences. Magn Reson Med 41:392–399

    Article  PubMed  Google Scholar 

  • Keegan J, Gatehause P, Yang G-Z, Firmin D (2002) Coronary artery motion with the respiratory cycle during breath-holding and free-breathing: implications for slice-followed coronary artery imaging. Magn Reson Med 47:476–481

    Article  PubMed  Google Scholar 

  • Keegan J, Gatehouse PD, Mohiaddin RH, Yang HZ, Firmin DN (2004) Comparison of spiral and FLASH phase velocity mapping, with and without breath-holding, for the assessment of left and RCA blood flow velocity. J Magn Reson Imaging 19:40–49

    Article  PubMed  Google Scholar 

  • Kessler W, Laub G, Achenbach S, Ropers D, Moshage W, Daniel WG (1999) Coronary arteries: MR angiography with fast contrast-enhanced three-dimensional breath-hold imaging — initial experience. Radiology 210:566–572

    PubMed  Google Scholar 

  • Kim WY, Stuber M, Kissinger KV, Andersen NT, Manning WJ, Botnar RM (2001a) Impact of bulk cardiac motion on right coronary MR angiography and vessel wall imaging. J Magn Reson Imaging 14:383–390

    Article  PubMed  Google Scholar 

  • Kim WY, Danias PG, Stuber M et al (2001b) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345:1863–1869

    Article  PubMed  Google Scholar 

  • Kim WY, Stuber M, Börnert P, Kissinger KV, Manning WJ, Botnar RM (2002) Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodelling in patients with nonsignificant coronary artery disease. Circulation 106:296–299

    Article  PubMed  Google Scholar 

  • Klein C, Nagel E, Schnackenburg B et al (2000) The intravascular contrast agent Clariscan (NC 100150 injection) for 3D coronary angiography in patients with coronary artery disease. MAGMA 11:65–67

    PubMed  Google Scholar 

  • Kooi ME, Cappendijk VC, Cleutjens KBJM et al (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458

    Article  PubMed  Google Scholar 

  • Kopp AF, Küttner A, Heuschmid M, Schröder S, Ohnesorge B, Claussen CD (2002) Multidetector-row CT cardiac imaging with 4 and 16 slices for coronary CTA and imaging of atherosclerotic plaques. Eur Radiol 12:S17–S24

    Article  PubMed  Google Scholar 

  • Koskenvuo JW, Hartiala JJ, Knuuti J et al (2001) Assessing coronary sinus flow blood in patients with coronary artery disease: a comparison of phase-contrast MR imaging with positron emission tomography. Am J Roentgenol AJR 177:1161–166

    Google Scholar 

  • Kragel AH, Gertz SD, Roberts WC (1991) Morphologic comparison of frequency and types of acute lesions in the major epicardial coronary arteries in unstable angina pectoris, sudden coronary death and acute myocardial infarction. J Am Coll Cardiol 18:801–808

    PubMed  Google Scholar 

  • Kuettner A, Kopp AF, Schroeder S et al (2004) Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with angiographically proven coronary artery disease. J Am Coll Cardiol 43:831–839

    Article  PubMed  Google Scholar 

  • Langerak SE, Kunz P, Vliegen HW et al (2001) Improved MR flow mapping in coronary artery bypass graft during adenosine-induced stress. Radiology 218:540–547

    PubMed  Google Scholar 

  • Langerak SE, Vliegen HW, de Roos A et al (2002) Detection of vein graft disease using high-resolution magnetic resonance angiography. Circulation 105:328–333

    Article  PubMed  Google Scholar 

  • Langerak SE, Vliegen JW, Zwinderman AH et al (2003a) Vein graft function improvement after percutaneous intervention: evaluation with MR flow mapping. Radiology 228:834–841

    PubMed  Google Scholar 

  • Langerak SE, Vliegen HW, Jukema JW et al (2003b) Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries. Circulation 107:1502–1508

    Article  PubMed  Google Scholar 

  • Leberthson RR, Dinsmore RR, Bharati S et al (1974) Aberrant coronary artery origin from the aorta: diagnosis and clinical significance. Circulation 50:774–779

    PubMed  Google Scholar 

  • Lenz GW, Haacke EM, White RD (1989) Retrospective cardiac gating: a review of technical aspects and future directions. Magn Reson Med 7:445–455

    Google Scholar 

  • Lethimonnier F, Furber A, Morel O et al (1999) Three-dimensional coronary artery MR imaging using prospective real-time respiratory navigator and linear phase shift processing: comparison with conventional coronary angiography. Magn Reson Imaging 17:1111–1120

    Article  PubMed  Google Scholar 

  • Li D, Paschal CB, Haacke EM, Adler LP (1993) Coronary arteries: three-dimensional MR imaging with fat saturation and magnetization transfer contrast. Radiology 187:401–406

    PubMed  Google Scholar 

  • Li D, Kaushikkar S, Haacke EM et al (1996) Coronary arteries: three-dimensional MR imaging with retrospective respiratory gating. Radiology 201:857–863

    PubMed  Google Scholar 

  • Li D, Dolan RP, Walovitch RC, Lauffer RB (1998) Three-dimensional MRI of coronary arteries using an intravascular contrast agent. Magn Reson Med 39:1014–1018

    PubMed  Google Scholar 

  • Li D, Carr JC, Shea SM, Zheng J, Deshpande VS, Wielopolski PA, Finn JP (2001a) Coronary arteries: magnetization-prepared contrast-enhanced three-dimensional volume targeted breath-hold MR angiography. Radiology 219:270–277

    PubMed  Google Scholar 

  • Li D, Zheng J, Weinmann H-J (2001b) Contrast-enhanced MR imaging of coronary arteries: comparison of intra-and extravascular contrast agents in Swine. Radiology 218:670–678

    PubMed  Google Scholar 

  • Lipton MJ, Barry WH, Obrez I, Silverman JF, Wexler L (1979) Isolated single coronary artery: diagnosis, angiographic classification, and clinical significance. Radiology 130:39–47

    PubMed  Google Scholar 

  • Lorenz CH, Johansson LO (1999) Contrast-enhanced coronary MRA. J Magn Reson Imaging 10:703–708

    Article  PubMed  Google Scholar 

  • Lund GK, Wendland MF, Shimakawa A et al (2000) Coronary sinus flow measurement by means of velocity-encoded cine MR imaging: validation by using flow probes in dogs. Radiology 217:487–493

    PubMed  Google Scholar 

  • Maintz D, Botnar RM, Fischbach R, Heindel W, Manning WJ, Stuber M (2002) Coronary magnetic resonance angiography for assessment of the stent lumen: a phantom study. J Cardiovasc Magn Reson 4:359–367

    Article  PubMed  Google Scholar 

  • Malik IS, Harare O Al-Nahhas A, Beatt K, Mason J (2003) Takayasu’s arteritis: management of left main stem stenosis. Heart 89:e9–e12

    Article  PubMed  Google Scholar 

  • Manke D, Börnert P, Nehrke K, Nagel E, Dössel O (2001) Accelerated coronary MRA by simultaneous acquisition of multiple 3D stacks. J Magn Reson Imaging 14:478–483

    Article  PubMed  Google Scholar 

  • Manke D, Nehrke K, Börnert P, Rosch P, Dossel P (2002) Respiratory motion in coronary magnetic resonance angiography: a comparison of different motion models. J Magn Reson Imaging 15:661–671

    Article  PubMed  Google Scholar 

  • Manning WJ, Li W, Boyle NG, Edelman RR (1993a) Fat-suppressed breath-hold magnetic resonance coronary angiography. Circulation 87:94–104

    PubMed  Google Scholar 

  • Manning WJ, Li W, Edelman RR (1993b) A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 328:828–832

    Article  PubMed  Google Scholar 

  • Manning WJ, Li W, Cohen SI, Johnson RG, Edelman RR (1995) Improved definition of anomalous LCA by magnetic resonance coronary angiography. Am Heart J 130:615–617

    Article  PubMed  Google Scholar 

  • Marcus ML, Skorton DJ, Johnson MR et al (1988) Visual estimates of percent diameter coronary stenosis: a battered gold standard. J Am Coll Cardiol 11:882–885

    PubMed  Google Scholar 

  • Marcus JT, Smeenk HG, Kuijer JPA, van der Geest RJ, Heethaar RM, van Rossum AC (1999) Flow profiles in the left anterior descending and the RCA assessed by MR velocity quantification: effects of through-plane and in-plane motion of the heart. J Comput Assist Tomogr 4:567–576

    Article  Google Scholar 

  • Marks B, Mitchell DG, Simelaro JP (1997) Breath-holding in healthy and pulmonary-compromised populations: effect of hyperventilation and oxygen inspiration. J Magn Reson Imaging 7:595–597

    PubMed  Google Scholar 

  • McCarthy RM, Shea SM, Deshpande VS et al (2003) Coronary MR angiography: true FISP imaging improved by prolonging breath holds with preoxygenation in healthy volunteers. Radiology 227:283–288

    PubMed  Google Scholar 

  • McConnell MV, Ganz P, Selwyn AP, Li W, Edelman RR, Manning WJ (1995) Identification of anomalous coronary arteries and their anatomci course by magnetic resonance coronary angiography. Circulation92:3158–3162

    PubMed  Google Scholar 

  • McConnell MV, Khasgiwala VC, Savord BJ et al (1997a) Prospective adaptive navigator correction for breath-hold MR coronary angiography. Magn Reson Med 37:148–152

    PubMed  Google Scholar 

  • McConnell MV, Khasgiwala VC, Savord BJ, Chen MH, Chuang ML, Edelman RR, Manning WJ (1997b) Comparison of respiratory suppression methods and navigator locations for MR coronary angiography. AJR Am J Roentgenol 168:1369–1375

    PubMed  Google Scholar 

  • McConnell MV, Stuber M, Manning WJ (2000) Clinical role of coronary magnetic resonance angiography in the diagnosis of anomalous coronary arteries. J Cardiovasc Magn Reson 2:217–224

    PubMed  Google Scholar 

  • Meyer CH, Pauly JM, Macovski A, Mishimura DG (1990) Simultaneous spatial and spectral selective excitation. Magn Reson Med 15:287–304

    PubMed  Google Scholar 

  • Miller S, Scheule AM, Hahn U et al (1999) MR angiography and flow quantification of the internal mammary artery graft after minimally invasive direct coronary artery bypass. AJR Am J Roentgenol 172:1365–1369

    PubMed  Google Scholar 

  • Mohiaddin RH, Bogren HG, Lazim F et al (1996) Magnetic resonance coronary angiography in heart transplant recipients. Coron Art Dis 7:591–597

    Google Scholar 

  • Möhlenkamp S, Hort W, Ge J, Erbel R (2002) Update on myocardial bridging. Circulation 106:2616–2622

    Article  PubMed  Google Scholar 

  • Molinari G, Sardanelli F, Zandrino F et al (2000) Coronary aneurysms and stenosis detected with magnetic resonance coronary angiography in a patient with Kawasaki disease. Ital Heart J 1:368–371

    PubMed  Google Scholar 

  • Myers WO, Blackstone EH, Davis K, Foster ED, Kaiser GC (1999) CASS Registry long term surgical survival: Coronary Artery Surgery Study. J Am Coll Cardiol 33:488–498

    Article  PubMed  Google Scholar 

  • Nagel E, Bornstedt A, Hug J, Schnackenburg B, Wellnhofer E, Fleck E (1999) Noninvasive determination of coronary blood flow velocity with magnetic resonance imaging: comparison of breath-hold and navigator techniques with intravascular ultrasound. Magn Reson Med 41:544–549

    Article  PubMed  Google Scholar 

  • Nagel E, Thouet T, Klein C et al (2003) Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients with stent deployment. Circulation 107:1738–1743

    Article  PubMed  Google Scholar 

  • Naghavi M, Libby P, Falk E et al (2003a) From vulnerable plaque to vulnerable patient. A call for nex definitions and risk assessment strategies: part 1. Circulation 108:1664–1672

    PubMed  Google Scholar 

  • Naghavi M, Libby P, Falk E et al (2003b) From vulnerable plaque to vulnerable patient. A call for nex definitions and risk assessment strategies, part 1. Circulation 108:1772–1778

    PubMed  Google Scholar 

  • Nguyen TD, Nuval A, Mulukutla S, Wang Y (2003) Direct monitoring of coronary artery motion with cardiac fat navigator echoes. Magn Reson Med 50:235–241

    Article  PubMed  Google Scholar 

  • Nieman K, Rensing BJ, van Geuns RJM et al (2002a) Non-invasive coronary angiography with multislice spiral computed tomography: impact of heart rate. Heart 88:470–474

    Article  PubMed  Google Scholar 

  • Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PMT, de Feyter PJ (2002b) Reliable noninvasive coronary angiography with fast submillimetre spiral computed tomography. Circulation 106:2051–2054

    PubMed  Google Scholar 

  • Nishimura DG, Macovski A, Pauly JM (1988) Considerations of magnetic resonance angiography by selective inversion recovery. Magn Reson Med 7:472–484

    PubMed  Google Scholar 

  • Nitatori T, Hanaoka H, Yoshino A et al (1995) Clinical application of magnetic resonance angiography for coronary arteries: correlation with conventional angiography and evaluation of imaging time. Nippon Acta Radiol 55:670–676

    PubMed  Google Scholar 

  • Omary RA, Green J, Finn JP, Li D (2002a) Catheter-directed gadolinium-enhanced MR angiography. Radiol Clin North Am 40:953–963

    Google Scholar 

  • Omary RA, Henseler KP, Unal O et al (2002b) Validation of injection parameters for catheter-directed intraarterial gadolinium-enhanced MR angiography. Acad Radiol 9:172–185

    Article  PubMed  Google Scholar 

  • Pannu HK, Flohr TG, Corl FM, Fishman EK (2003) Current concepts in multi-detector row CT evaluation of the coronary arteries: principles, techniques, and anatomy. RadioGraphics 23:S111–S125

    PubMed  Google Scholar 

  • Paulin S, von Schulthess GK, Fossel E, Krayenbuehl HP (1987) MR imaging of the aortic root and proximal coronary arteries. AJR Am J Roentgenol 148:665–670

    PubMed  Google Scholar 

  • Paschal CB, Haacke EM, Adler LP (1993) Three-dimensional MR imaging of the coronary arteries: preliminary clinical experience. J Magn Reson Imaging 3:491–501

    PubMed  Google Scholar 

  • Pelliccia A (2001) Congenital coronary artery anomalies in young patients. New perspectives for timely identification. J Am Coll Cardiol 37:598–600

    Article  PubMed  Google Scholar 

  • Pennell DJ, Keegan J, Firmin DN, Gatehouse PD, Underwood SR, Longmore DB (1993) Magnetic resonance imaging of the coronary arteries: technique and preliminary results. Br Heart J 70:315–326

    PubMed  Google Scholar 

  • Pepine C, Holmes DR, Block PC et al (1996) ACC expert consens document. Coronary artery stents. J Am Coll Cardiol 28:782–794

    PubMed  Google Scholar 

  • Plein S, Ridgway JP, Jones TR, Bloomer TN, Sivananthan MU (2002) Coronary artery disease: assessment with a comprehensive MR imaging protocol — initial results. Radiology 225:300–307

    PubMed  Google Scholar 

  • Plein S, Bulugahapitiya S, Jones TR, Bainbridge GJ, Ridgway JP, Sivnananthan MU (2003a) Cardiac MR imaging with external respirator: synchronizing cardiac and respiratory motion — feasibility study. Radiology 227:877–882

    PubMed  Google Scholar 

  • Plein S, Jones TR, Ridgway JP, Sivananthan MU (2003b) Three-dimensional coronary MR angiography performed with subject-specific cardiac acquisition windows and motion-adapted respiratory gating. Am J Roentgenol AJR 180:505–512

    Google Scholar 

  • Post JC, van Rossum AC, Bronzwaer JGF et al (1995) Magnetic resonance angiography of anomalous coronary arteries. A new gold standard for delineating the proximal course? Circulation 92:3163–3173

    PubMed  Google Scholar 

  • Post JC, van Rossum AC, Hofman MBM, Valk J, Visser CA (1996) Three-dimensional respiratory-gated MR angiography of coronary arteries: comparison with conventional contrast coronary angiography. AJR Am J Roentgenol 166:426–433

    Google Scholar 

  • Post JC, van Rossum AC, Hofman MB, de Cock CC, Valk J, Visser CA (1997) Clinical utility of two-dimensional magnetic resonance angiography in detecting coronary artery disease. Eur Heart J 18:426–433

    PubMed  Google Scholar 

  • Prêtre R, Tamisier D, Bonhoeffer P et al (2001) Results of the arterial switch operation in neonates with transposed great arteries. Lancet 35:1826–1830

    Article  Google Scholar 

  • Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191:155–164

    PubMed  Google Scholar 

  • Pruessmann KP, Weiger M, Boesiger P (2001) Sensitivity encoded cardiac MRI. J Cardiovasc Magn Reson 3:1–9

    Article  PubMed  Google Scholar 

  • Quick H, Ladd M, Nanz D, Mikolajczyk K, Debatin J (1999) Vascular stents af RF antennas for intravascular MR guidance and imaging. Magn Reson Med 42:738–745

    Article  PubMed  Google Scholar 

  • Quick H, Kuehl H, Kaiser G, Bosk S, Debatin JF, Ladd ME (2002) Inductively coupled stent antennas in MRI. Magn Reson Med 48:781–790

    Article  PubMed  Google Scholar 

  • Reddy KS, Yusuf S (1998) Emerging epidemic of cardio-vascular disease in developing countries. Circulation 97:596–601

    PubMed  Google Scholar 

  • Regenfus M, Ropers D, Achenbach S et al (2000) Noninvasive detection of coronary artery stenosis using breath-hold enhanced three-dimensional breath-hold magnetic resonance coronary angiography. J Am Coll Cardiol 36:44–50

    Article  PubMed  Google Scholar 

  • Regenfus M, Ropers D, Achenbach S et al (2002) Comparison of contrast-enhanced breath-hold and free-breathing respiratory-gated imaging in three-dimensional magnetic resonance coronary angiography. Am J Cardiol 90:725–730

    Article  PubMed  Google Scholar 

  • Regenfus M, Roper D, Achenbach S et al (2003) Diagnostic value of maximum intensity projections versus source images for assessment of contrast-enhanced tree-dimensional breath-hold magnetic resonance coronary angiography. Invest Radiol 38:200–206

    Article  PubMed  Google Scholar 

  • Rubinstein RI, Askenase AD, Thickman D, Feldman MS, Agarwal JB, Helfant RH (1987) Magnetic resonance imaging to evaluate patency of aortocoronary bypass grafts. Circulation 76:786–791

    PubMed  Google Scholar 

  • Saito Y, Sakuma H, Shibata M et al (2001) Assessment of coronary flow velocity reserve using fast velocity-encoded cine MRI for noninvasive detection of restenosis after coronary stent implantation. J Cardiovasc Magn Reson 3:209–214

    Article  PubMed  Google Scholar 

  • Sakuma H, Kawada N, Takeda K, Higgins CB (1999) MR measurment of coronary blood flow. J Magn Reson Imaging 10:728–733

    Article  PubMed  Google Scholar 

  • Sandstede JJ, Pabst T, Beer M, Geis N, Kenn W, Neubauer S, Hahn D (1999) Three-dimensional MR coronary angiography using the navigator technique compared with conventional coronary angiography. AJR Am J Roentgenol 172:135–139

    PubMed  Google Scholar 

  • Sardanelli F, Molinari G, Zandrino F, Balbi M (2000) Three-dimensional, navigator-echo MR coronary angiography in detecting stenoses of the major epicardial vessels, with conventional coronary angiography as the standard of reference. Radiology 214:808–814

    PubMed  Google Scholar 

  • Sardanelli F, Zandrino F, Molinari G, Iozzelli A, Balbi M, Barsotti A (2002) MR evaluation of coronary stents with navigator echo and breath-hold cine gradient-echo techniques. Eur Radiol 12:193–200

    Article  PubMed  Google Scholar 

  • Schär M, Kim WY, Stuber M et al (2002) The impact of spatial resolution and respiratory motion on magnetic resonance plaque characterization. J Cardiovasc Magn Reson 4:73–74

    Google Scholar 

  • Schär M, Kim WY, Stuber M, Boesiger P, Manning WJ, Botnar RM (2003) The impact of spatial resolution and respiratory motion on MR imaging of atherosclerotic plaque. J Magn Reson Imaging 17:538–544

    Article  PubMed  Google Scholar 

  • Scheidegger MB, Müller R, Boesiger P (1994) Magnetic resonance angiography: methods and its applications to the coronary arteries. Technol Health Care 2:255–265

    PubMed  Google Scholar 

  • Scheidegger MB, Stuber M, Boesiger P, Hess OM (1996) Coronary artery imaging by magnetic resonance. Herz 21:90–96

    PubMed  Google Scholar 

  • Schroeder AP, Houlind K, Pedersen AM, Thuesen L, Nielsen TT, Egeblad H (2000) Magnetic resonance imaging seems safe in patients with intracoronary stents. J Cardiovasc Magn Reson 2:43–49

    PubMed  Google Scholar 

  • Schwitter J, DeMarco T, Kneifel S et al (2000) Magnetic resonance-based assessment of global coronary flow and flow reserve and its relation to left ventricular functional parameters. A comparison with positron emission tomography. Circulation 101:2696–2702

    PubMed  Google Scholar 

  • Scott N, Pettigrew R (1994) Absence of movement of coronary stents after placement in a magnetic resonance imaging field. Am J Cardiol 73:900–901

    Article  PubMed  Google Scholar 

  • Serruys PW, de Jaegere P, Kiemeneij F et al (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 331:489–495

    Article  PubMed  Google Scholar 

  • Shea SM, Kroeker RM, Deshpande V et al (2001) Coronary artery imaging: 3D segmented κ-space data acquisition with multiple breath-holds and real-time slab following. J Magn Reson Imaging 13:301–307

    Article  PubMed  Google Scholar 

  • Shea SM, Deshpande VS, Chung Y-C, Li D (2002) Three-dimensional true-FISP imaging of the coronary arteries: improved contrast with T2-preparation. J Magn Reson Imaging 15:597–602

    Article  PubMed  Google Scholar 

  • Simonetti OP, Finn JP, White RD, Laub G, Henry DA (1996) “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 199:49–57

    PubMed  Google Scholar 

  • Sinkus R, Börnert P (1999) Motion pattern adapted real-time respiratory gating. Magn Reson Med 41:148–155

    Article  PubMed  Google Scholar 

  • Slavin GS, Riederer SJ, Ehman RL (1998) Two-dimensional multishot echo-planar coronary angiography. Magn Reson Med 40:883–889

    PubMed  Google Scholar 

  • Sohn S, Kim HS, Lee SW (200) Multidetector row computed tomography for follow-up of patients with coronary artery aneurysms due to Kawasaki disease. Pediatr Cardiol 25:35–39

    Article  Google Scholar 

  • Sommer T, Hofer U, Hackenbroch M et al (2002) Submil-limeter 3D coronary MR angiography with real-time navigator correction in 107 patients with suspected coronary artery disease. Röfo Fortschr Röntgenstr 174:459–466

    Article  Google Scholar 

  • Spuentrup E, Stuber M, Botnar RM, Manning WJ (2001) The impact of navigator timing parameters and navigator spatial resolution on 3D coronary magnetic resonance angiography. J Magn Reson Imaging 14:311–318

    Article  PubMed  Google Scholar 

  • Spuentrup E, Buecker A, Karassimos E, Günter RW, Stuber M (2002a) Navigator-gated and real-time motion corrected free-breathing MR imaging of myocardial late enhancement. Röfo Fortschr Röntgenstr 174:562–567

    Article  Google Scholar 

  • Spuentrup E, Manning WJ, Botnar RM, Kissinger KV, Stuber M (2002b) Impact of navigator timing on free-breathing submillimetre 3D coronary magnetic resonance angiography. Magn Reson Med 47:196–201

    Article  PubMed  Google Scholar 

  • Spuentrup E, Bornert P, Botnar RM, Groen JP, Manning WJ, Stuber M (2002c) Navigator-gated free-breathing three-dimensional balanced fast field echo (TrueFISP) coronary magnetic resonance angiography. Invest Radiol 37:637–642

    Article  PubMed  Google Scholar 

  • Spuentrup E, Katoh M, Stuber M, Botnar R, Schaeffter T, Buecker A, Gunther RW (2003) Coronary MR imaging using free-breathing 3D steady-state free precession with radial κ-space sampling. Röfo Fortschr Röntgenstr 175:1330–1334

    Google Scholar 

  • Spuentrup E, Katoh M, Buecker A et al (2004) Free-breathing 3D steady-state free-precession coronary MR angiography using radial κ-space sampling: comparison to Cartesian κ-space sampling and Cartesian T2-prepared gradient-echo coronary MR angiography — a pilot study. Radiology

    Google Scholar 

  • Stary HC, Blankenhorn DH, Chandler AB et al (1992) A definition of the intima of human arteries and of its athero-sclerosis-prone regions: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Special report. Circulation 85:391–405

    PubMed  Google Scholar 

  • Stary HC, Chandler AB, Dinsmore RE et al (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Circulation 92:1355–1374

    PubMed  Google Scholar 

  • Strohm O, Kivelitz D, Gross W et al (1999) Safety of implantable coronary stents during 1H-magnetic resonance imaging at 1.0 and 1.5 T. J Cardiovasc Magn Reson 3:239–245

    Google Scholar 

  • Strong JP, Malcolm GT, Oalmann MC et al (1997) The PDAY study: natural history, risk factors, and pathobiology: pathobiological determinants of atherosclerosis in youth. Ann NY Acad Sci 811:226–237

    PubMed  Google Scholar 

  • Stuber M, Botnar RM, Danias PG et al (1999a) Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J Magn Reson Imaging 10:790–799

    Google Scholar 

  • Stuber M, Botnar RM, Danias PG et al (1999b) Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J Am Coll Cardiol 34:524–531

    Article  PubMed  Google Scholar 

  • Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ (1999c) Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 212:579–587

    PubMed  Google Scholar 

  • Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ (1999d) Breathhold three-dimensional coronary magnetic resonance angiography using real-time navigator technology. J Cardiovasc Magn Reson 1:233–238

    PubMed  Google Scholar 

  • Stuber M, Botnar RM, Spuentrup E, Kissinger KV, Manning WJ (2001a) Three-dimensional high-resolution fast spinecho coronary magnetic resonance angiography. Magn Reson Med 45:206–211

    Article  PubMed  Google Scholar 

  • Stuber M, Botnar RM, Kissinger KV, Manning WJ (2001b) Free-breathing black-blood coronary MR angiography: initials results. Radiology 219:278–283

    PubMed  Google Scholar 

  • Stuber M, Danias PG, Botnar RM, Sodickson DK, Kissinger KV, Manning WJ (2001c) Superiority of prone position in free-breathing 3D coronary MRA in patients with coronary disease. J Magn Reson Imaging 13:185–191

    Article  PubMed  Google Scholar 

  • Stuber M, Börnert P, Spuentrup E, Botnar RM, Manning WJ (2002a) Selective three-dimensional visualization of the coronary arterial lumen using arterial spin tagging. Magn Reson Med 47:322–329

    Article  PubMed  Google Scholar 

  • Stuber M, Botnar RM, Fischer SE et al (2002b) Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magn Reson Med 48:425–429

    Article  PubMed  Google Scholar 

  • Tang C, Blatter DD, Parker DL (1993) Accuracy of phase-contrast flow measurements in the presence of partial-volume effects. J Magn Reson Imaging 3:377–385

    PubMed  Google Scholar 

  • Taupitz M, Schnorr J, Wagner S et al (2001) Coronary magnetic resonance angiography: experimental evaluation of the new rapid clearance blood pool contrast agent medium P 792. Magn Reson Med 46:932–938

    Article  PubMed  Google Scholar 

  • Taupitz M, Schnorr J, Wagner S et al (2002) Coronary MR angiography: experimental results with a monomer-stabilized blood pool contrast medium. Radiology 222:120–126

    PubMed  Google Scholar 

  • Taylor AM, Jhooti P, Wiesmann F et al (1997) MR navigator-echo monitoring of temporal changes in diaphragm position: implications for MR coronary angiography. J Magn Reson Imaging 7:629–636

    PubMed  Google Scholar 

  • Taylor AM, Panting JR, Keegan J et al (1999) Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography. J Magn Reson Imaging 9:220–227

    Article  PubMed  Google Scholar 

  • Taylor AM, Keegan J, Jhooti P, Gatehouse PD, Firmin DN, Pennell DJ (2000a) A comparison between segmented κ-space FLASH and interleaved spiral MR coronary angiography sequences. J Magn Reson Imaging 11:394–400

    Article  PubMed  Google Scholar 

  • Taylor AM, Thorne SA, Rubens MB et al (2000b) Coronary artery imaging in grown up congenital heart disease. Complementary role of magnetic resonance and X-ray coronary angiography. Circulation 101:1670–1678

    PubMed  Google Scholar 

  • Taylor AM, Dymarkowski S, Haemaekers P et al Magnetic resonance coronary angiography and late-enhancement myocardial imaging in children with arterial switch operation for transposition of the great arteries. Radiology (in press)

    Google Scholar 

  • Thedens DR, Irarrazaval P, Sachs TS, Meyer CH, Nishimura DG (1999) Fast magnetic resonance coronary angiography with a three-dimensional stack of spiral trajectory. Magn Reson Med 41:1170–1179

    Article  PubMed  Google Scholar 

  • Van den Brink J, Watanabe Y, Kuhl CK et al (2003) Implications of SENSE MR in routine clinical practice. Eur J Radiol 46:3–27

    Article  PubMed  Google Scholar 

  • Van Geuns RJM, de Bruin HG, Rensing BJWM Rensing et al (1999) Magnetic resonance imaging of the coronary arteries: clinical results from three dimensional evaluation of a respiratory gated technique. Heart 82:515–519

    PubMed  Google Scholar 

  • Van Geuns RJM, Wielopolski PA, de Bruin HG et al (2000) MR coronary angiography with breath-hold targeted volumes: preliminary clinical results. Radiology 217:270–277

    PubMed  Google Scholar 

  • Van Geuns RJM, Oudkerk M, Rensing BJVM et al (2002) Comparison of coronary imaging between magnetic resonance imaging and electron beam computed tomography. Am J Cardiol 90:58–63

    Article  PubMed  Google Scholar 

  • Van Ooijen PMA, van Geuns RJM, Rensing BJWM, Bongaerts AHH, de Feyter PJ, Oudkerk (2003) Noninvasive coronary imaging using electron beam CT: surface rendering versus volume rendering. AJR Am J Roentgenol 180:223–226

    PubMed  Google Scholar 

  • Van Rossum AC, Galjee MA, Post JC, Visser CA (1997) A practical approach to MRI of coronary artery bypass graft patency and flow. Int J Cardiac Imaging 13:199–204

    Article  Google Scholar 

  • Vick GW III, Muthupillai R, Su JT, Kovalchin JP, Chung T (2003) Magnetic resonance angiography of coronary arteries and peripheral arteries in infants and young children with Kawasaki disease. J Am Coll Cardiol 495A

    Google Scholar 

  • Vitiello R, McCrindle BW, Nykanen D et al (1998) Complications associated with pediatric cardiac catheterization. J Am Coll Cardiol 32:1433–1440

    Article  PubMed  Google Scholar 

  • Vrachliotis TG, Bis KG, Aliabadi D, Shetty AN, Safian R, Simonetti O (1997) Contrast-enhanced breath-hold MR angiography for evaluating patency of coronary artery bypass graft. Am J Roentgenol 168:1073–1080

    Google Scholar 

  • Walker F, Webb G (2001) Congenital coronary artery anomalies: the adult perspective. Cor Art Dis 12:599–604

    Article  Google Scholar 

  • Wang Y, Ehman RL (2000) Retrospective adaptive motion correction of navigator-gated 3D coronary MR angiography. J Magn Reson Imaging 11:208–214

    Article  PubMed  Google Scholar 

  • Wang Y, Riederer SJ, Ehman RL (1995) Respiratory motion of the heart: kinematics and the implications for the spatial resolution of coronary MR imaging. Magn Reson Med 33:713–719

    PubMed  Google Scholar 

  • Wang Y, Rossman PJ, Grimm RC, Riederer SJ, Ehman RL (1996) Navigator-echo-based real-time respiratory gating and triggering for reduction of respiration effects in three-dimensional coronary MR angiography. Radiology 198:55–60

    PubMed  Google Scholar 

  • Wang Y, Vidan E, Bergman GW (1999) Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 213:751–758

    PubMed  Google Scholar 

  • Wang Y, Winchester PA, Yu L et al (2000) Breath-hold three-dimensional contrast-enhance coronary MR angiography: motion-matched κ-space sampling for reducing cardiac motion effects. Radiology 215:600–607

    PubMed  Google Scholar 

  • Wang Y, Watts R, Mitchell IR et al (2001) Coronary MR angiography: selection of acquisition window of minimal cardiac motion with electrocardiography-triggered navigator cardiac motion prescanning — initial results. Radiology 218:580–585

    PubMed  Google Scholar 

  • Weber C, Steiner P, Sinkus R, Dill T, Börnert P, Adam G (2002) Correlation of 3D MR coronary angiography with selective coronary angiography: feasibility of the motion-adapted gating technique. Eur Rad 122:718–726

    Article  Google Scholar 

  • Weber O, Martin AJ, Higgins CB (2003) Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med 50:1223–1228

    Article  PubMed  Google Scholar 

  • Weiger M, Börnert P, Proksa R, Schaffter T, Haase A (1997) Motion-adapted gating based on κ-space weighting for reduction of respiratory motion artefacts. Magn Reson Med 38:322–333

    PubMed  Google Scholar 

  • Weissler AM, Harris WS, Schoenfeld CD (1968) Systolic time intervals in heart failure in man. Circulation 37:149–159

    PubMed  Google Scholar 

  • White CW, Wright CB, Doty DB et al (1984) Does visual interpretation of the coronary angiogram predict the physiological importance of a coronary stenosis? N Engl J Med 310:819–824

    PubMed  Google Scholar 

  • White CW (1993) Clinical applications of Doppler coronary flow reserve measurements. Am J Cardiol 71:10D–16D

    Article  PubMed  Google Scholar 

  • White RD, Caputo GR, Mark AS, Modin GW, Higgins CB (1987) Coronary artery bypass graft patency: noninvasive evaluation with MR imaging. Radiology 164:681–686

    PubMed  Google Scholar 

  • White CS, Laskey WK, Stafford JL, NessAiver M (1999) Coronary MRA: use in assessing anomalies of coronary artery origin. J Comput Assist Tomogr 23:203–207

    Article  PubMed  Google Scholar 

  • Wielopolski PA, Manning WJ, Edelman RE (1995) Single breath-hold volumetric imaging of the heart using magnetization-prepared 3-dimensional segmented echo-planar imaging. J Magn Res Imaging 5:403–409

    Google Scholar 

  • Wielopolski PA, van Geuns RJM, de Feyter PJ, Oudkerk M (1998) Breath-hold coronary MR angiography with volume targeted imaging. Radiology 209:209–219

    PubMed  Google Scholar 

  • Wielopolski PA, van Geuns RJM, de Feyter PJ, Oudkerk M (2000) Coronary Arteries. Review article. Eur Radiol 10:12–35

    Article  PubMed  Google Scholar 

  • Wintersperger BJ, Engelmann MG, von Smekal A et al (1998) Patency of coronary bypass grafts: assessment with breath-hold contrast-enhanced MR angiography — value of a non-electrocardiographically triggered technique. Radiology 208:345–351

    PubMed  Google Scholar 

  • Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10:135–144

    PubMed  Google Scholar 

  • Wolff SD, Eng J, Balaban RS (1991) Magnetization transfer contrast: method for improving contrast in gradient-recalled images. Radiology 179:133–137

    PubMed  Google Scholar 

  • Worthley SG, Helft G, Valentin F et al (2000a) Noninvasive in vivo magnetic resonance imaging of experimental coronary artery lesions in a porcine model. Circulation 101:2956–2961

    PubMed  Google Scholar 

  • Worthley SG, Helft G, Fuster F et al (2000b) High resolution ex vivo magnetic resonance imaging of in situ coronary and aortic atherosclerotic plaque in a porcine model. Atherosclerosis 150:321–329

    Article  PubMed  Google Scholar 

  • Worthley SG, Helft G, Fayad ZA et al (2001) Cardiac gated breath-hold black blood MRI of the coronary artery wall: an in vivo and ex vivo comparison. Int J Cardiovasc Imaging 17:195–201

    Article  PubMed  Google Scholar 

  • Worthley SG, Helft G, Fuster V et al (2003) A novel non-obstructive intravascular MRI coil. In vivo imaging of experimental atherosclerosis. Arterioscler Vasc Biol 23:346–350

    Article  Google Scholar 

  • Yang, GZ, Gatehouse PD, Keegan J, Mohiaddin RH, Firmin DN (1998) Three-dimensional coronary MR angiography using zonal echo planar imaging. Magn Reson Med 39:833–842

    PubMed  Google Scholar 

  • Yoshino H, Nitatori T, Kachi E et al (1997) Directed proximal magnetic resonance coronary angiography compared with conventional contrast coronary angiography. Am J Cardiol 80:514–518

    Article  PubMed  Google Scholar 

  • Zaman AG, Helft G, Worthley SG, Badimon JJ (2000) The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 149:251–266

    Article  PubMed  Google Scholar 

  • Zheng J, Li D, Cavagna FM et al (2001) Contrast-enhanced coronary MR angiography: relationship between coronary artery delineation and blood T1. J Magn Reson Imaging 14:348–354

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogaert, J., Dymarkowski, S., Taylor, A.M. (2005). Coronary Artery Disease. In: Bogaert, J., Dymarkowski, S., Taylor, A.M. (eds) Clinical Cardiac MRI. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26997-5_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-26997-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40170-4

  • Online ISBN: 978-3-540-26997-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics