Skip to main content
Book cover

Bionik pp 517–528Cite as

Mechanical stress as the main factor in skull design of the fossil reptile Proterosuchus (Archosauria)

  • Chapter

Abstract

Biomechanical methods reveal construction principles in natural structures. To understand the process of shaping in the skeleton of vertebrates we assume that mechanical constraints are one of the most important factors. We begin by testing this hypothesis with simple models, which are analyzed using the Finite-Element- Method (FEM) with only minor basic rules for support and force initiation. The aim of this study of the crocodile-like fossil Proterosuchus is to obtain a simplified model, which is, in shape and internal structure, as close as possible to the natural counterpart. Our results of the virtual 2D- and 3D-model allow us to predict the origin of natural structures. This leads to a possible reconstruction of the soft tissues in the skull of Proterosuchus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rowe T et al. (1999) Introduction to Alligator: Digital atlas of the skull. Soc Vert Paleont Mem 6: 1–8

    Google Scholar 

  2. Speakman JR (ed.) (2001) Body composition analysis in animals: A handbook of nondestructive methods. Cambridge University Press, Cambridge

    Google Scholar 

  3. Harzheim L, Graf G (1995) Optimization of engineering components with the SKO method. Proc 9th Int Conf Vehicle Struct Mech CAE, pp 235–243

    Google Scholar 

  4. www.cas.mcmaster.ca/∼oplab/confs/confs/mopta01/john/harzheim.pdf

    Google Scholar 

  5. Fastnacht M et al. (2002) Finite Element Analysis in Vertebrate Palaeontology. Senckenbergiana Lethaea 82: 195–206

    Google Scholar 

  6. Jenkins I et al. (2002) Primates and engineering principles: applications to craniodental mechanisms in ancient terrestrial predators. Senckenbergiana Lethaea 82: 223–240

    Google Scholar 

  7. Rayfield ER et al. (2001) Cranial design and function in a large theropod dinosaur. Nature 409: 1033–1037

    Article  PubMed  Google Scholar 

  8. Wolff J (1892) Gesetz der Transformation der Knochen. Hirschwald, Berlin

    Google Scholar 

  9. Amtmann E (1971) Mechanical stress, functional adaptation and the variation structure of the human femur diaphysis. Ergebn Anat Entwicklungsgesch 44

    Google Scholar 

  10. Witzel U et al. (1998) Analyse der Spannungsverteilung im spongiösen Sinus-Augmentat nach sekundärer Implantation mit Hilfe der Methode der Finite Elemente (FEM). Target 1: 10–11

    Google Scholar 

  11. Amtmann E, Doden E (1982) Anpassung der Knochenstruktur an mechanische Beanspruchung. Z Morph Anthrop 72: 1–21

    Google Scholar 

  12. Pauwels F (1960) Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe. Z Anat Entwicklungsgesch 121: 478–515

    Article  PubMed  Google Scholar 

  13. Cruickshank ARI (1972) Proterosuchus. In: Joysey KA, Kemp TS (eds) Studies in Vertebrate Evolution. Oliver & Boyd, Edinburgh, 89–119

    Google Scholar 

  14. Welman J, Flemming A (1993) Statistical analysis of skulls of Triassic Proterosuchids (Reptilia, Archosauromorpha) from South Africa. Palaeont Afr 30: 113–123

    Google Scholar 

  15. Broom R (1903) On a new reptile (Proterosuchus fergusi) from the Karroo Beds of Tarkastad, South Africa. Ann S Afr Mus 4: 159–164

    Google Scholar 

  16. Young CC (1958) On the occurrence of Chasmatosaurus from Wuhsiang, Shanxi. Vert PalAs 2: 261

    Google Scholar 

  17. Welman J (1998) The taxonomy of the South African proterosuchids (Reptilia, Archosauromorpha). J Vert Pal 18: 340–347

    Google Scholar 

  18. Williston SW (1910) The skull of Labidosaurus. Amer J Anat 10: 69–84

    Article  Google Scholar 

  19. Peyer B (1935) Die Triasfauna der Tessiner Kalkalpen. X. Clarazia schinzi nov. gen. nov. sp. Abh Schweiz Pal Ges 57: 1–61

    Google Scholar 

  20. Broom R (1913) Note on Mesosuchus browni, Watson, and on a New South African pseudosuchian (Euparkeria capensis). Rec Albany Mus 2: 394–396

    Google Scholar 

  21. Huene F von (1921) Neue Beiträge zur Kenntnis der Parasuchier. Jb Preuß Geol L.-anst 42: 59–160

    Google Scholar 

  22. Gasparini Z et al. (1993) New Tertiary sebecosuchians (Crocodylomorpha) from South America: Phylogenetic implications. Hist Biol 7: 1–19

    Google Scholar 

  23. Lauder GV, Norton SF (1980) Asymmetrical muscle activity during feeding in the gar, Lepisosteus oculatus. J Exp Zool 84: 17–32

    Google Scholar 

  24. Busbey AB (1995) Structural consequences of skull flattening in crocodilians in Functional Morphology and Vertebrate Paleontology. In: Thomason JJ (ed) Functional Morphology in Vertebrate Paleontology. Cambridge University Press, Cambridge, pp 173–192

    Google Scholar 

  25. Preuschoft H, Witzel U (2002) Biomechanical investigations on the Skulls of Reptiles and Mammals. Senckenbergiana Lethaea 82: 207–222

    Google Scholar 

  26. Witzel U, Preuschoft H (1999) The bony roof of the nose in humans and other primates. Zool Anz 238: 103–115

    Google Scholar 

  27. Preuschoft H et al. (2002) Pneumatized spaces, sinuses and spongy bones in the skulls of primates. Anthrop Anz 60: 67–79

    Google Scholar 

  28. Rossmann T (2000) Studies on Cenozoic crocodilians. 4. Biomechanical investigation on the skull and the cervical region of the Palaeogene crocodile Pristichampsus rollinatii (Eusuchia: Pristichampsidae). N Jahrb Geol Pal Abh 215: 397–432

    Google Scholar 

  29. Erickson GM (2001) The bite of Allosaurus. Nature 409: 987

    Article  PubMed  Google Scholar 

  30. Frazetta TH et al. (2002) Prey attack by a large theropod dinosaur. Nature 416: 387–388

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rossmann, T., Witzel, U., Preuschoft, H. (2005). Mechanical stress as the main factor in skull design of the fossil reptile Proterosuchus (Archosauria). In: Bionik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26948-7_31

Download citation

Publish with us

Policies and ethics