Skip to main content

Ion channels as functional components in sensors of biomedical information

  • Chapter
Bionik
  • 5200 Accesses

Abstract

The membranes of eukaryotic and prokaryotic cells contain proteins which function as ion channels. The activity of these ion-conducting enzymes is regulated by a variety of physical and chemical factors. In this sense these proteins are ideal components for bio-sensing devices, because they are able to convert the presence of analytes into electrical signals. The present article presents some conceptional and technical aspects on the application of ion channels in bio-sensing. These aspects are discussed in the context of recent advances in the molecular understanding of ion channel structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hille B (2001) Ion channels of excitable membranes. 3rd ed, Sinauer Associates, Sunderland

    Google Scholar 

  2. Ashcroft FM (2000) Ion channels and disease. Academic Press, San Diego

    Google Scholar 

  3. Very AA, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7: 168–175

    Article  PubMed  Google Scholar 

  4. DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue. Ann Rev Physiol 55: 455–472

    Article  Google Scholar 

  5. Santoro B, Tibbs GR (1999) The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels” Ann NY Acad Sci 868: 741–64

    PubMed  Google Scholar 

  6. Neher E, Sakmann B (1992) The patch clamp technique. Sci Am 266: 44–51

    PubMed  Google Scholar 

  7. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391: 85–100

    Article  PubMed  Google Scholar 

  8. Colquhoun D, Hawkes AG (1981) On the stochastic properties of single ion channels. Proc R Soc London B 211: 205–235

    Google Scholar 

  9. Miller C (1985) Ion channel reconstitution. Plenum Press, New York

    Google Scholar 

  10. Fertig N, George M, Klau M, Meyer C, Tilke A, Sobotta C, Blick RH, Behrends JC (2003) Microstructured apertures in planar glass substrates for ion channel research. Receptors Channels 9: 29–40

    Article  PubMed  Google Scholar 

  11. Borisenko V, Lougheed T, Hesse J, Fureder-Kitzmuller E, Fertig N, Behrends JC, Woolley GA, Schutz GJ (2003) Simultaneous optical and electrical recording of single gramicidin channels. Biophys J 84: 612–622

    PubMed  Google Scholar 

  12. Michalke A et al. (2001) Channel activity of a phytotoxin of Clavibacter michiganense ssp. nebraskense in tethered membranes. Eur Biophys J 3: 421–429

    Article  Google Scholar 

  13. Ide T, Takeuchi Y, Aoki T, Yanagida T (2002) Simultaneous optical and electrical recording of a single ion-channel. Jpn J Physiol 52: 429–434

    Article  PubMed  Google Scholar 

  14. Ide T, Yanagida T (1999) An artificial lipid bilayer formed on an agarose-coated glass for simultaneous electrical and optical measurement of single ion channels. Biochem Biophys Res Commun 265: 595–599

    Article  PubMed  Google Scholar 

  15. Lühring H (1999) pH-sensitive gating kinetics of the maxi-K channel in the tonoplast of Chara australis. J Membr Biol 168: 47–61

    Article  PubMed  Google Scholar 

  16. Papazian DM, Bezanilla F (1999) Voltage-dependent activation of ion channels. Adv Neurol 79: 481–491

    PubMed  Google Scholar 

  17. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, McIntyre P, Jegla T, Bevan S, Patapoutian A (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112: 819–829

    Article  PubMed  Google Scholar 

  18. Liu B, Hui K, Qin F (2003) Thermodynamics of Heat Activation of Single Capsaicin Ion Channels VR1. Biophys J 85: 2988–3006

    PubMed  Google Scholar 

  19. Kuniyasu A, Kaneko K, Kawahara K, Nakayama H (2003) Molecular assembly and subcellular distribution of ATP-sensitive potassium channel proteins in rat hearts. FEBS Lett 552: 259–263

    Article  PubMed  Google Scholar 

  20. Dabrowski M, Trapp S, Ashcroft FM (2003) Pyridine nucleotide regulation of the KATP channel Kir6.2/SUR1 expressed in Xenopus oocytes. J Physiol 550: 357–363

    Article  PubMed  Google Scholar 

  21. Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Ann Rev Physiol 65: 453–480

    Article  Google Scholar 

  22. DiFrancesco D, Tortora P (1991): Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 351: 145–147

    Article  PubMed  Google Scholar 

  23. DiFrancesco D, Mangoni M (1994) Modulation of single hyperpolarization-activated channels (i(f)) by cAMP in the rabbit sino-atrial node. J Physiol 474:473–482

    PubMed  Google Scholar 

  24. Sigworth FJ (2003) Life's transistors. Nature 423: 21–22

    Article  PubMed  Google Scholar 

  25. Stühmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi M, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339: 597–603

    Article  PubMed  Google Scholar 

  26. Miller AG, Aldrich RW (1996) Conversion of a delayed rectifier K+ channel to a voltage-gated inward rectifier K+ channel by three amino acid substitutions. Neurone 16: 853–858

    Article  Google Scholar 

  27. Grabov A Blatt MR (1997) Parallel control of the inward-rectifier K+ channel by cytosoloic free Ca2+ and pH in Vicia guard cells. Planta 201: 84–95

    Article  Google Scholar 

  28. Hoth S, Hedrich R (1999) Distinct molecular bases for pH sensitivity of the guard cell K+ channels KST1 and KAT1. J Biol Chem 274: 11599–11603

    Article  PubMed  Google Scholar 

  29. Hoth S, Dreyer I, Dietrich P, Becker D, Muller-Rober B, Hedrich R (1997) Molecular basis of plant-specific acid activation of K+ uptake channels. Proc Natl Acad Sci 94: 4806–4810

    Article  PubMed  Google Scholar 

  30. Santoro B, Grant SG, Bartsch D, Kandel ER (1997) Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. Proc Natl Acad Sci 94: 14815–14820

    Article  PubMed  Google Scholar 

  31. Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR (1998) Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 29: 717–729

    Article  Google Scholar 

  32. Ludwig A, Zong X, Stieber J, Hullin R, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393: 587–591

    Article  PubMed  Google Scholar 

  33. Shabb JB, Corbin JD (1992) Cyclic nucleotide-binding domains in proteins having diverse functions. J Biol Chem 267: 5723–5726

    PubMed  Google Scholar 

  34. Wainger BJ et al. (2001) Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature 411: 805–810

    Article  PubMed  Google Scholar 

  35. Zagotta WN, Olivier NB, Black KD, Young EC, Olson R, Gouaux E (2003) Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425, 200–205

    Article  PubMed  Google Scholar 

  36. Chen J, Mitcheson JS, Lin M, Sanguinetti MC (2000) Functional roles of charged residues in the putative voltage sensor of the HCN2 pacemaker channel. J Biol Chem 275: 36465–36471

    Article  PubMed  Google Scholar 

  37. Vaca L, Stieber J, Zong X, Ludwig A, Hofmann F, Biel M (2000) Mutations in the S4 domain of a pacemaker channel alter its voltage dependence. FEBS Lett. 479: 35–40

    Article  PubMed  Google Scholar 

  38. Zong X, Stieber J, Ludwig A, Hofmann F, Biel M (2001) A single histidine residue determines the pH sensitivity of the pacemaker channel HCN2. J Biol Chem 276: 6313–6319

    Article  PubMed  Google Scholar 

  39. Bayley H, Cremer PS (2001) Stochastic sensors inquired by biology. Nature 413: 226–230

    Article  PubMed  Google Scholar 

  40. Cornell BA et al. (1997) A biosensor that uses ion-channel switches. Nature 387: 580–583

    Article  PubMed  Google Scholar 

  41. Lucas SW, Harding MM (2000) Detection of DNA via an ion channel switch biosensor. Analyt Biochem 282: 70–79

    Article  PubMed  Google Scholar 

  42. Movileanu L, Howorka S, Braha O, Bayley H (2000) Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nature Biotechnol 18: 1091–1095

    Article  Google Scholar 

  43. Carrasco L (1995) Modification of membrane permeability by animal viruses. Adv Virus Res 45: 61–112

    PubMed  Google Scholar 

  44. Fischer WB, Sansom MS (2002) Viral ion channels: structure and function. Biochim Biophys Acta 1561: 27–45

    PubMed  Google Scholar 

  45. Montal M (2003) Structure-function correlates of Vpu, a membrane protein of HIV-1. FEBS Lett 552: 47–53

    Article  PubMed  Google Scholar 

  46. Pinto LH, Holsinger LJ, Lamb RA (1992): Influenza virus M2protein has ion channel activity. Cell 69: 517–528

    Article  PubMed  Google Scholar 

  47. Plugge B, Gazzarrini S, Nelson M, Cerana R, Van Etten JL, Derst C, DiFrancesco D, Moroni A, Thiel G (2000) A potassium channel protein encoded by chlorella virus PBCV-1. Science 287: 1641–1644

    Article  PubMed  Google Scholar 

  48. Moroni A, Viscomi C, Sangiorgio V, Pagliuca C, Meckel T, Horvath F, Gazzarini S, Valbuzzi P, VanEtten JL, DiFrancesco D, Thiel G (2002) The short N-terminus is required for functional expression of the virus-encoded miniature K+ channel Kcv. FEBS Lett 530: 65–69

    Article  PubMed  Google Scholar 

  49. Gazzarrini S, Severino M, Lombardi M, Morandi M, DiFrancesco D, Van Etten JL, Thiel G, Moroni A (in press) The viral potassium channel Kcv: structural and functional features. FEBS Lett

    Google Scholar 

  50. Gazzarrini S, Van Etten JL, DiFrancesco D, Thiel G, Moroni A. (2002) Voltage-dependence of virus-encoded miniature K+ channel Kcv. J Membrane Biol 187: 15–25

    Article  Google Scholar 

  51. Kang M, Gazzarrini S, Severino M, DiFrancesco D, Thiel G, Van Etten JL, Moroni (submitted) A An insight into domain interactions of a potassium channel pore from natural diversity of viral genes. Molecular Cell Biology

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thiel, G., Moroni, A. (2005). Ion channels as functional components in sensors of biomedical information. In: Bionik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26948-7_28

Download citation

Publish with us

Policies and ethics