Skip to main content

Sensor Design

  • Chapter

Part of the book series: Microtechnology and MEMS ((MEMS))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Nye, “Physical Properties of Crystals,” Oxford University Press, Oxford, 1957.

    Google Scholar 

  2. T. Toriyama, S. Sugiyama, “Analysis of Piezoresistance in p-Type Silicon for Mechanical Sensors,” Journal of Microelectromechanical Systems, 11, No. 5, pp. 598–604, 2002.

    CAS  Google Scholar 

  3. J. C. Suhling, R. C. Jaeger, “Silicon Piezoresistive Stress Sensors and Their Application in Electronic Packaging,” IEEE Sensors Journal, 1, No. 1, pp. 14–29, 2001.

    Article  CAS  Google Scholar 

  4. A. Nathan, H. Baltes, “Microtransducer CAD, Physical and Computional Aspects,” Springer, Vienna, 1999.

    Google Scholar 

  5. -, “X-CMOS 0.8, Modular Mixed Signal Technology,” http://www.xfab.com/sheets/ds-cx08.pdf Datasheet, X-FAB Semiconductor Foundries AG, 2002.

    Google Scholar 

  6. O. N. Tufte, E. L. Stelzer, “Piezoresistive Properties of Silicon Diffused Layers,” Journal of Applied Physics, 34, No. 2, pp. 313–317, 1963.

    Article  CAS  Google Scholar 

  7. Y. Kanda, “A Graphical Representation of the Piezoresistance Coefficients in Silicon,” IEEE Transactions on Electron Devices, 29, No. 1, pp. 64–70, 1982.

    Google Scholar 

  8. U. Schiller, “Thermomechanical Offset in Integrated Hall Plates,” Diploma Thesis, IMTEK, University of Freiburg, Freiburg, 2001.

    Google Scholar 

  9. B. L. Lwo, C. H. Kao, T. S. Chen, Y. S. Chen, “On the Study of Piezoresistive Stress Sensors for Microelectronic Packaging,” Journal of Electronic Packaging, 124, pp. 22–26, 2002.

    CAS  Google Scholar 

  10. B. J. Lwo, T. S. Chen, C. H. Kao, Y. L. Lin, “In-Plane Packaging Stress Measurement Through Piezoresistive Sensors,” Journal of Electronic Packaging, 124, pp. 115–121, 2002.

    Google Scholar 

  11. W. Pietrenko, “Einfluss von Temperatur und Störstellenkonzentration auf den Piezowiderstandseffekt in n-Silizium,” (in German), Physica Status Solidi, A, No. 41, pp. 197–205, 1977.

    Google Scholar 

  12. S. F. Chu, “Piezoresistive Properties of Boron and Phosphorous Implanted Layers in Silicon,” Ph.D. Thesis, Case Western Reserve University, 1978.

    Google Scholar 

  13. M. Mayer, “Microelectronic Bonding Process Monitoring by Integrated Sensors,” Ph.D. Thesis, No. 13685, ETH Zurich, Zurich, 2000.

    Google Scholar 

  14. S. A. Liu, H. L. Tzo, “A novel six-component force sensor of good measurement isotropy and sensitivities,” Sensors and Actuators A, 100, pp. 223–230, 2002.

    Article  Google Scholar 

  15. V. I. Fabrikant, “Applications of Potential Theory in Mechanics,” Kluwer Academic Publishers, Dordrecht, 1989.

    Google Scholar 

  16. J. Rosen, “Symmetry in Science,” Springer, New York, 1995.

    Google Scholar 

  17. M. Hizukuri, T. Asano, “Measurement of Dynamic Strain During Ultrasonic Au Bump Formation on Si Chip,” Japanese Journal of Applied Physics, Part 1 (Regular Papers, Short Notes & Review Papers), 39, No. 4B, pp. 2478–2482, 2000.

    CAS  Google Scholar 

  18. T. Ikeda, N. Miyazaki, K. Kudo, K. Arita, H. Yakiyama, “Failure Estimation of Semiconductor Chip During Wire Bonding Process,” Journal of Electronic Packaging, 121, pp. 85–91, 1999.

    CAS  Google Scholar 

  19. A. C. Fischer-Cripps, “Introduction to Contact Mechanics,” Springer, New York, 2000.

    Google Scholar 

  20. Y. Takahashi, S. Shibamoto, K. Inoue, “Numerical Analysis of the Interfacial Contact Process in Wire Thermocompression Bonding,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, 19, No. 2, pp. 213–223, 1996.

    Article  CAS  Google Scholar 

  21. I. C. Noyan, “Plastic Deformation of Solid Spheres,” Philosophical Magazine A, 57, No. 1, pp. 127–141, 1988.

    Google Scholar 

  22. W. Budweiser, “Untersuchung des Thermosonic Ballbondverfahrens,” (in German), Ph.D. Thesis, Technical Univ. Berlin, Berlin, 1993.

    Google Scholar 

  23. J. Schwizer, M. Mayer, D. Bolliger, O. Paul, H. Baltes, “Thermosonic Ball Bonding: Friction Model Based on Integrated Microsensor Measurements,” Proc. 25th IEEE/CPMT Intl. Electronics Manufacturing Technology Symposium IEMT, pp. 108–114, 1999.

    Google Scholar 

  24. K. L. Johnson, “Contact Mechanics,” Cambridge University Press, Cambridge, pp. 70–74, 1985.

    Google Scholar 

  25. L. D. Landau, E. M. Lifschitz, “Theory of Elasticity,” Pergamon Press, London, 1959.

    Google Scholar 

  26. J. R. Barber, “Elasticity,” Kluwer Academic Publishers, Dordrecht, 1992.

    Google Scholar 

  27. G. M. Hamilton, L. E. Goodman, “The Stress Field Created by a Circular Sliding Contact,” Trans. ASME, Journal of Applied Mechanics, 33, pp. 371–376, 1966.

    Google Scholar 

  28. O. Madelung, M. Schulz, H. Weiss, “Landolt-Börnstein,” Semiconductors, 17, Berlin, 1982.

    Google Scholar 

  29. A. Schroth, “Modelle für Balken und Platten in der Mikromechanik,” Dresden University Press, Dresden, 1996.

    Google Scholar 

  30. V. Ziebart, “Mechanical Properties of CMOS Thin Films,” Ph.D. Thesis, No. 13457, ETH Zurich, Zurich, 1999.

    Google Scholar 

  31. J. H. Lau, “Thermal Stress and Strain in Microelectronics Packaging,” Van Nostrand Reinhold, New York, 1993.

    Google Scholar 

  32. D. S. Gardner, P. A. Flinn, “Mechanical Stress as a Function of Temperature in Aluminum Films,” IEEE Transactions on Electron Devices, 35, No. 12, pp. 2160–2169, 1988.

    Article  CAS  Google Scholar 

  33. A. Carrass, V. P. Jaecklin, “Analytical Methods to Characterise the Interconnection Quality of Gold Ball Bonds,” ] Proc. 2nd Europ. Conf. Electr. Packaging Technol. EuPac’96, pp. 135–139, 1996.

    Google Scholar 

  34. M. L. Minges, “Packaging,” Electronic Materials Handbook, 1, ASM International, Materials Park, pp. 534ff, 1989.

    Google Scholar 

  35. M. Mayer, J. Schwizer, O. Paul, H. Baltes, “In-situ Ultrasonic Stress Measurement During Ball Bonding using Integrated Piezoresistive Microsensors,” Proc. Intersociety Electron. Pack. Conf. (InterPACK99), pp. 973–978, 1999.

    Google Scholar 

  36. J. Schwizer, M. Mayer, O. Brand, H. Baltes, “Analysis of Ultrasonic Wire Bonding by In situ Piezoresistive Microsensors,” Proc. Transducers’ 01/Eurosensors XV, pp. 1426–1429, 2001.

    Google Scholar 

  37. J. Schwizer, M. Mayer, O. Brand, H. Baltes, “In Situ Ultrasonic Stress Microsensor for Second Bond Characterization,” Proc. International Symposium on Microelectronics IMAPS, pp. 338–343, 2001.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Sensor Design. In: Force Sensors for Microelectronic Packaging Applications. Microtechnology and MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26945-2_2

Download citation

Publish with us

Policies and ethics