Skip to main content

Rapid Effects of Estradiol on Motivated Behaviors

  • Conference paper
Hormones and the Brain

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI))

  • 1102 Accesses

Summary

Estradiol can act extracellularly to rapidly enhance dopamine (DA) activity in striatum and nucleus accumbens (NAcc) as well as the behavioral response to psychomotor stimulants. Considerable research has demonstrated that the effects of estradiol on behavioral and neurochemical indices of DA activity in the striatum are found in female but not male rats. Furthermore, natural variation in circulating hormones modulates this neural system. During naturally occurring behavioral estrus, amphetamine (AMPH)-induced striatal DA release and AMPH-induced behaviors are potentiated relative to other days of the estrous cycle. Ovariectomy (OVX) attenuates, whereas estradiol treatment in OVX rats rapidly enhances, striatal DA release and behaviors that are thought to be mediated by striatal DA activity. Estradiol has similar effects on dopamine activity in the NAcc.

Sex differences in, and hormonal influences on, the ascending DA system have implications for drug abuse. In adult rats, there are sex differences in the rate of behavioral sensitization to cocaine and in the acquisition of cocaine self-administration behavior. These sex differences occur independent of circulating gonadal hormones: OVX females exhibit greater sensitization and more rapid onset of cocaine self-administration than do castrated males. Furthermore, estradiol treatment to OVX females, but not to castrated male rats, enhances both sensitization and acquisition of cocaine self-administration. We postulate that hormonal modulation of this pathway evolved because of its role in the motivation to engage in sexual behavior, since extracellular dopamine increases during sexual behavior in the female rat. A model is proposed to describe the mechanism through which estradiol enhances stimulated DA release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler NT (1978) On the mechanisms of sexual behavior and their evolutionary constraints. In: Hutchison JB (ed) Biological determinants of sexual behavior New York: Wiley and Sons, pp 657–694.

    Google Scholar 

  • Arbuthnott GW, Crow TJ (1971) Relation of contraversive turning to unilateral release of dopamine from the nigrostriatal pathway in rats. Exp Neurol 30:484–491.

    Article  PubMed  Google Scholar 

  • Bazzett TJ, Becker JB (1994) Sex differences in the rapid and acute effects of estrogen on striatal D2 dopamine receptor binding. Brain Res 637:163–172.

    Article  PubMed  Google Scholar 

  • Beatty WW, Holzer GA (1978) Sex differences in stereotyped behavior in the rat. Pharmacol Biochem Behav 9:777–785.

    Article  PubMed  Google Scholar 

  • Beatty WW, Dodge AM, Traylor KL (1982) Stereotyped behavior elicited by amphetamine in the rat: organizational and activational effects of the testes. Pharmacol Biochem Behav 16:565–568.

    Article  PubMed  Google Scholar 

  • Becker JB (1990a) Direct effect of 17β-estradiol on striatum: sex differences in dopamine release. Synapse. 5:157–164.

    Article  PubMed  Google Scholar 

  • Becker JB (1990b) Estrogen rapidly potentiates amphetamine-induced striatal dopamine release and rotaional behavior during microdialysis. Neurosci Lett 118:169–171.

    Article  PubMed  Google Scholar 

  • Becker JB (1999) Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol Biochem Behavior 64:803–812.

    Article  Google Scholar 

  • Becker JB, Ramirez VD (1981a) Experimental studies on the development of sex differences in the release of dopamine from striatal tissue fragments in vitro. Neuroendocrinology 32:168–173.

    PubMed  Google Scholar 

  • Becker JB, Ramirez VD (1981b) Sex differences in the amphetamine stimulated release of catecholamines from rat striatal tissue in vitro. Brain Res 204:361–372.

    Article  PubMed  Google Scholar 

  • Becker JB, Beer ME (1986) The influence of estrogen on nigrostriatal dopamine activity: behavioral and neurochemical evidence for both pre-and postsynaptic components. Behav Brain Res 19:27–33.

    Article  PubMed  Google Scholar 

  • Becker JB, Cha J (1989) Estrous cycle-dependent variation in amphetamine-induced behaviors and striatal dopamine release assessed with microdialysis. Behav Brain Res 35:117–125.

    PubMed  Google Scholar 

  • Becker JB, Rudick CN (1999) Rapid effects of estrogen or progesterone on the amphetamine-induced increase in striatal dopamine are enhanced by estrogen priming: A microdialysis study. Pharmacol Biochem Behavior 64:53–57.

    Article  Google Scholar 

  • Becker JB, Robinson TE, Lorenz KA (1982) Sex differences and estrous cycle variations in amphetamine-elicited rotational behavior. Eur J Pharmacol 80:65–72.

    Article  PubMed  Google Scholar 

  • Becker JB, Molenda HA, Hummer DL (2001a) Gender differences in the behavioral responses to cocaine and amphetamine: implications for mechanisms mediating gender differences in drug abuse. Ann NY Acad Sci 937:172–187.

    PubMed  Google Scholar 

  • Becker JB, Rudick CN, Jenkins WJ (2001b) The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat. J Neurosci 21:3236–3241.

    PubMed  Google Scholar 

  • Bowman BP, Vaughan SR, Walker QD, Davis SL, Little PJ, Scheffler NM, Thomas BF, Kuhn CM (1999) Effects of sex and gonadectomy on cocaine metabolism in the rat. J Pharmacol ExpTherap 290:1316–1323.

    Google Scholar 

  • Camp DM, Becker JB, Robinson TE (1986) Sex differences in the effects of gonadectomy on amphetamine-induced rotational behavior in rats. Behav Neural Biol 46:491–495.

    Article  PubMed  Google Scholar 

  • Castner SA, Becker JB (1990) Estrogen and striatal dopamine release: a microdialysis study. Soc Neurosci Abstr 16.

    Google Scholar 

  • Conney AH (1967) Pharmacological implications of microsomal enzyme induction. Pharmacol Rev 19:317–366.

    PubMed  Google Scholar 

  • Costall B, Naylor RJ (1977) Mesolimbic and extrapyramidal sites for the mediation of stereotyped behavior patterns and hyperactivity by amphetamine and apomorphine in the rat. In: Ellinwood EH, Kilbey MM (eds) Cocaine and other stimulants. New York: Plenum Press, pp 47–76.

    Google Scholar 

  • Crombag HS, Mueller H, Browman KE, Badiani A, Robinson TE (1999) A comparison of two behavioral measures of psychomotor activation following intravenous amphetamine or cocaine: dose-and sensitization-dependent changes. Behav Pharmacol 10:205–213.

    PubMed  Google Scholar 

  • Damsma G, Pfaus JG, Wenkstern D, Phillips AG, Fibiger HC (1992) Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion. Behav Neurosci 106:181–191.

    Article  PubMed  Google Scholar 

  • Demotes-Mainard J, Arnauld E, Vincent JD (1990) Estrogens modulate the responsiveness of in vivo reorded striatal neurons to iontophoretic application of dopamine in rats: role of D1 and D2 receptor activation. J Neuroendocrinol 2:825–832.

    Google Scholar 

  • Dluzen DE, Ramirez VD (1984) Bimodal effect of progesterone on in vitro dopamine function of the rat corpus striatum. Neuroendocrinology 39:149–155.

    PubMed  Google Scholar 

  • Dluzen DE, Ramirez VD (1987) Intermittent infusion of progesterone potentiates whereas continuous infusion reduces amphetamine-stimulated dopamine elease from ovariectomized estrogen-primed rat striatal fragments superfused in vitro. Brain Res 406:1–9.

    Article  PubMed  Google Scholar 

  • Dluzen DE, Ramirez VD(1989) Progesterone effects upon dopamine release from the corpus striatum of female rats. I. Evidence for interneuronal control. Brain Res 476:332–337.

    Article  PubMed  Google Scholar 

  • Dluzen DE, Ramirez VD (1990) In vitro progesterone modulates amphetamine-stimulated dopamine release from the corpus striatum of castrated male rats treated with estrogen. Neuroendocrinology 52:517–520.

    PubMed  Google Scholar 

  • Dluzen DE, Ramirez VD (1991) Modulatory effects of progesterone upon dopamine release from the corpus striatum of ovariectomized estrogen-treated rats are stereo-specific. Brain Res 538:176–179.

    Article  PubMed  Google Scholar 

  • Fink JS, Smith GP (1980) Relationships between selective denervation of dopamine terminal fields in the naterior forebrain and behavioral responses to amphetamine and apomorphine. Brain Res 201:107–127.

    Article  PubMed  Google Scholar 

  • Fiorino DF, Phillips AG (1999) Facilitation of sexual behavior and enhanced dopamine efflux in the nucleus accumbens of male rats after D-amphetamine-induced behavioral sensitization. J Neurosci 19:456–463.

    PubMed  Google Scholar 

  • Fog R (1972) On stereotypy and catalepsy: studies on the effect of amphetamines and neuroleptics in rats. Acta Neurol Scand [Suppl] 50:3–66.

    Google Scholar 

  • Griffin ML, Weiss RD, Lange U (1989) A comparison of male and female cocaine abuse. Arch Gen Psychiat 46:122–126.

    PubMed  Google Scholar 

  • Hruska RE, Pitman KT (1982) Hypophysectomy reduces the haloperidol-induced changes in striatal dopamine receptor density. Eur J Pharmacol 85:201–205.

    Article  PubMed  Google Scholar 

  • Hruska RE, Ludmer LM, Pitman KT, De Ryck M, Silbergeld EK (1982) Effects of estrogen on striatal dopamine receptor function in male and female rats. Pharmacol Biochem Behav 16:285–291.

    Article  PubMed  Google Scholar 

  • Hu M, Becker JB (2003) Effects of sex and estrogen on behavioral sensitization to cocaine in rats. J Neurosci 23:693–699.

    PubMed  Google Scholar 

  • Hu M, Crombag HS, Robinson T, Becker JB (2003) The biological basis for sex differences in the propensity to self-administer cocaine. Neuropsychopharmacology advance online publication Sept. 3, 2003: 1300301.

    Google Scholar 

  • Jenkins WJ, Becker JB (2001) Role of the striatum and nucleus accumbens in paced copulatory behavior in the female rat. Behav Brain Res 121:119–128.

    Article  PubMed  Google Scholar 

  • Jenkins WJ, Becker JB (2003a) Dynamic increases in dopamine during paced copulation in the female rat. Eur J Neurosci 18:1997–2001.

    Article  PubMed  Google Scholar 

  • Jenkins WJ, Becker JB (2003b) Female rats develop conditioned place preferences for sex at their preferred interval. Horm Behav 43:503–507.

    Article  PubMed  Google Scholar 

  • Kandel DB, Warner MPP, Kessler RC (1995) The epidemiology of substance abuse and dependence among women. In: Wetherington CL, Roman AR (eds) Drug addiction research and the health of women. (Rockville, MD: U.S. Department of Health and Human Services, pp 105–130.

    Google Scholar 

  • Ke FC, Ramirez VD (1990) Binding of progesterone to nerve cell membranes of rat brain using progesterone conjugated to 125I-bovine serum albumin as a ligand. J Neurochem 54: 467–472.

    PubMed  Google Scholar 

  • Kosten TA, Gawin FH, Kosten TR, Rounsaville BJ (1993) Gender differeces in cocaine use and treatment response. J Subst Abuse Treat 10:63–66.

    Article  PubMed  Google Scholar 

  • Levesque D, Di Paolo T (1988) Rapid conversion of high into low striatal D2-dopamine receptor agonist binding states after an acute physiological dose of 17 beta-estradiol. Neurosci Lett 88:113–118.

    Article  PubMed  Google Scholar 

  • Lynch WJ, Carroll ME (1999) Sex differences in the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacology 144:77–82.

    Article  PubMed  Google Scholar 

  • Lynch WJ, Roth ME, Carroll ME (2002) Biological basis of sex differences in drug abuse: preclinical and clinical studies. Psychopharmacology 164:121–137.

    Article  PubMed  Google Scholar 

  • Maus M, Cordier J, Glowinski J, Premont J (1989a) 17β-Oestradiol pretreatment of mouse striatal neurons in culture enhances the responses to adenylate cyclase sensitive tobiogenic amines. Eur J Neurosci 1:1.

    PubMed  Google Scholar 

  • Maus M, Bertrand P, Drouva S, Rasolonjanahary R, Kordon C, Glowinski J, Premont J, Enjalbert A (1989b) Differential modulation of D1 and D2 dopamine-sensitive adenylate cyclases by 17β-estradiol in cultures styriatal neurons and anterior pituitary cells. J Neurochem 52:410–418.

    PubMed  Google Scholar 

  • McCarthy MM, Becker JB (2002) Neuroendocrinology of sexual behavior in the female. In: Becker JB, Breedlove SM, Crews D, McCarthy MM (eds) Behavioral endocrinology. 2nd Edition.. Cambridge, MA: MIT Press/ Bradford Books, pp 117–151

    Google Scholar 

  • McClintock MK (1984) Group mating in the domestic rat as context for sexual selection: consequences for the analysis of sexual behavior and neuroendocrine responses. Adv Study Behav 14:1–50.

    Google Scholar 

  • Meisel RL, Camp DM, Robinson TE (1993) A microdialysis study of ventral striatal dopamine during sexual behavior in female Syrian hamsters. Behav Brain Res 55:151–157.

    Article  PubMed  Google Scholar 

  • Mendelson JH, Weiss R, Griffin M, Mirin SM, Teoh SK, Mello NK, Lex BW (1991) Some special considerations for treatment of drug abuse and dependence in women. NIDA Res Monogr 106:313–327.

    PubMed  Google Scholar 

  • Mermelstein PG, Becker JB (1995) Increased extracellular dopamine in the nucleus accumbens and striatum of the female rat during paced copulatory behavior. Behav Neurosci 109: 354–365.

    Article  PubMed  Google Scholar 

  • Mermelstein PG, Becker JB, Surmeier DJ (1996) Estradiol reduces calcium currents in rat neostriatal neurons through a membrane receptor. J Neurosci 16:595–604.

    PubMed  Google Scholar 

  • Mislow JF, Freidhoff AJ (1973) A comparison of chlorpromazine-induced extrapyramidal syndrome in male and female rats. In: Lissak K (ed) Hormones and brain function. New York: Plenum Press, pp 315–326.

    Google Scholar 

  • Paredes RG, Vazquez B (1999) What do female rats like about sex? Paced mating. Behav Brain Res 105:117–127.

    Article  PubMed  Google Scholar 

  • Pfaus JG, Damsma G, Nomikos GG, Wenkstern DG, Blaha CD, Phillips AG, Fibiger HC (1990) Sexual behavior enhances central dopamine transmission in the male rat. Brain Res 530: 345–348.

    Article  PubMed  Google Scholar 

  • Phillips AG, Pfaus JG, Blaha CD (1991) Dopamine and motivated behavior: insights provided by in vivo analyses. In: Willmer P, Scheel-Kruger J (eds) The mesolimbic dopamine system: from motivation to action. New York: John Wiley, pp 199–224.

    Google Scholar 

  • Pleim ET, Matochik JA, Barfield RJ, Auerbach SB (1990) Correlation of dopamine release in the nucleus accumbens with masculine sexual behavior in rats. Brain Res 524:160–163.

    Article  PubMed  Google Scholar 

  • Robbins SJ, Ehrman RN, Childress AR, OíBrien CP (1999) Comparing levels of cocaine cue reactivity in male and female outpatients. Drug Alcohol Depend 53:223–230.

    Article  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96:103–114.

    Article  PubMed  Google Scholar 

  • Robinson TE, Becker JB, Ramirez VD (1980) Sex differences in amphetamine-elicited rotational behavior and the lateralization of striatal dopamine in rats. Brain Res Bull 5: 539–545.

    Article  PubMed  Google Scholar 

  • Robinson TE, Camp DM, Becker JB (1981) Gonadectomy attenuates turning behavior produced by electrical stimulation of the nigrostriatal dopamine system in female but not male rats. Neurosci Lett 23:203–208.

    Article  PubMed  Google Scholar 

  • Robinson TE, Camp DM, Jacknow DS, Becker JB (1982) Sex differences and estrous cycle dependent variation in rotational behavior elicited by electrical stimulation of the mesostriatal dopamine system. Behav Brain Res 6:273–287.

    Article  PubMed  Google Scholar 

  • Savageau MM, Beatty WW (1981) Gonadectomy and sex differences in the behavioral responses of amphetamine and apomorphine of rats. Pharmacol Biochem Behav 14:17–23.

    Article  PubMed  Google Scholar 

  • Thompson TL (1999) Attenuation of dopamine uptake in vivo following priming with estradiol benzoate. Brain Research 834:164–167.

    Article  PubMed  Google Scholar 

  • Thompson TL, Moss RL (1994) Estrogen regulation of dopamine release in the nucleus accumbens: genomic-and nongenomic-mediated effects. J Neurochem 62:1750–1756.

    PubMed  Google Scholar 

  • Thompson TL, Moss RL (1995) In vivo stimulated dopamine release in the nucleus accumbens: Modulation by prefrontal cortex. Brain Res 686:93–98.

    Article  PubMed  Google Scholar 

  • Thompson TL, Moss RL (1997) Modulation of mesolimbic dopaminergic activity over the rat estrous cycle. Neurosci Lett 229:145–148.

    Article  PubMed  Google Scholar 

  • Thompson TL, Moore CC, Smith B (2000) Estrogen priming modulates autoreceptor-mediated potentiation of dopamine uptake. Eur J Pharmacol 401:357–363.

    Article  PubMed  Google Scholar 

  • Thompson TL, Bridges SR, Weirs WJ (2001) Alteration of dopamine transport in the striatum and nucleus accumbens of ovariectomized and estrogen-primed rats following N-(pisothiocyanatophenethyl) spiperone (NIPS) treatment. Brain Res Bull 54:631–638.

    Article  PubMed  Google Scholar 

  • Ungerstedt U (1971) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behavior. Acta Physiol Scand 82(Suppl. 367):49–68.

    Google Scholar 

  • van Haaren F, Meyer M (1991) Sex differences in the locomotor activity after acute and chronic cocaine administration. Pharmacol Biochem Behav 39:923–927.

    Article  PubMed  Google Scholar 

  • Verimer T, Arneric SP, Long JP, Walsh BJ, Abou Zeit-Har MS (1981) Effects of ovariectomy, castration, and chronic lithium chloride treatment on stereotyped behavior in rats. Psychopharmacology 75:273–276.

    Article  PubMed  Google Scholar 

  • Walker QD, Cabassa J, Kaplan KA, Li ST, Haroon J, Spohr HA, Kuhn CM (2001) Sex differences in cocaine-stimulated motor behavior: Disparate effects of gonadectomy. Neuropsychopharmacology 25:118–130.

    Article  PubMed  Google Scholar 

  • Wetherington CL, Roman AR (eds) (1995) Drug addiction research and the health of women. Rockville, MD: U.S. Department of Health and Human Services.

    Google Scholar 

  • Wong M, Thompson TL, Moss RL (1996) Nongenomic actions of estrogen in the brain: physiological significance and cellular mechanisms. Crit Rev Neurobiol 10:189–203.

    PubMed  Google Scholar 

  • Xiao L, Becker JB (1994) Quantitative microdialysis determination of extracellular striatal dopamine concentrations in male and female rats: effects of estrous cycle and gonadectomy. Neurosci Lett 180:155–158.

    Article  PubMed  Google Scholar 

  • Xiao L, Becker JB (1997) Hormonal activation of the striatum and the nucleus accumbens modulates paced mating behavior in the female rat. Horm Behav 32:114–124.

    Article  PubMed  Google Scholar 

  • Xiao L, Jackson LR, Becker JB (2003) The effect of estradiol in the striatum is blocked by ICI 182,780 but not tamoxifen: pharmacological and behavioral evidence. Neuroendocrinology 77:239–245.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Becker, J.B. (2005). Rapid Effects of Estradiol on Motivated Behaviors. In: Kordon, C., Gaillard, RC., Christen, Y. (eds) Hormones and the Brain. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26940-1_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-26940-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21355-0

  • Online ISBN: 978-3-540-26940-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics