Progestins and antiprogestins: mechanisms of action, neuroprotection and myelination

  • M. Schumacher
  • A. Ghoumari
  • R. Guennoun
  • F. Labombarda
  • S.L. Gonzalez
  • M.C. Gonzalez Deniselle
  • C. Massaad
  • J. Grenier
  • K.M. Rajkowski
  • F. Robert
  • E.E. Baulieu
  • A.F. De Nicola
Conference paper
Part of the Research and Perspectives in Endocrine Interactions book series (RPEI)


Progesterone, originally considered as a hormone involved only in reproductive functions, exerts pleiotropic effects throughout the central and peripheral nervous systems. As early as 10 years ago, its role in myelination had been demonstrated in the regenerating peripheral nerve and in cocultures of neurons and Schwann cells. More recently, it has been shown that progesterone also accelerates myelin formation by oligodendrocytes in cerebellar organotypic cultures. Attention to the neuroprotective effects of progesterone was attracted at the end of the 1980s by the observation that female rats with high endogenous levels of progesterone recover better from traumatic brain injury and have less edema and secondary neuron loss than males. The protective effects of progesterone have been mainly studied in lesion models. However, progesterone also protects neurons from neurodegeneration, as has been documented in the Wobbler mouse, a murine model of spinal cord motoneuron degeneration. These findings have significant clinical implications, but an efficient therapeutic use of progestins for treating lesions or diseases of the nervous system would require a better understanding of their mechanisms of action in neurons and glial cells. We have indeed only a rudimentary understanding of the molecular mechanisms by which progestins exert their pleiotropic effects in the brain. Their study should provide a substantial basis for the design of progesterone analogs with much safer and selective actions. This review will summarize our current knowledge of the multiple mechanisms of progesterone action: the role of different progesterone receptor isoforms, the importance of coregulator proteins in modulating their transcriptional activities, and novel progesterone actions mediated by membrane receptors. The detailed account of the multiple mechanisms of progesterone action is followed by a discussion of recent studies, documenting the promyelinating and neuroprotective effects of progestins and offepristone (RU486), known as an antiprogestin or selective progesterone receptor modulator (SPRM). Their actions involve both classical and novel mechanisms.


Progesterone Receptor Purkinje Cell Schwann Cell Sigma Receptor Neuroactive Steroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Hafiz H, Takimoto GS, Tung L, Horwitz KB (2002) The inhibitory function in human progesterone receptor N termini binds SUMO-1 protein to regulate autoinhibition and transrepression. J Biol Chem 277:33950–33956CrossRefPubMedGoogle Scholar
  2. Agarwala KL, Ganesh S, Amano K, Suzuki T, Yamakawa K (2001) DSCAM, a highly conserved gene in mammals, expressed in differentiating mouse brain. Biochem Biophys Res Commun 281:697–705CrossRefPubMedGoogle Scholar
  3. Apostolakis EM, Garai J, Fox C, Smith CL, Watson SJ, Clark JH, O’Malley BW (1996) Dopaminergic regulation of progesterone receptors: brain D5 dopamine receptors mediate induction oflordosis by D1-like agonists in rats. J Neurosci 16:4823–4834PubMedGoogle Scholar
  4. Apostolakis EM, Ramamurphy M, Zhou D, Onate S, O’Malley BW (2002) Acute disruption of select steroid receptor coactivators prevents reproductive behavior in rats and unmasks genetic adaptation in knockout mice. Mol Endocrinol 16:1511–1523CrossRefPubMedGoogle Scholar
  5. Auger AP, Tetel MJ, McCarthy MM (2000) Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology and behavior. Proc Natl Acad Sci U S A 97:7551–7555CrossRefPubMedGoogle Scholar
  6. Auger AP, Perrot S, Auger CJ, Ekas LA, Tetel MJ, McCarthy MM (2002) Expression of the nuclear receptor coactivator, cAMP response element-binding protein, is sexually dimorphic and modulates sexual differentiation of neonatal rat brain. Endocrinology 143:3009–3016CrossRefPubMedGoogle Scholar
  7. Azcoitia I, Leonelli E, Magnaghi V, Veiga S, Garcia S, Melcangi RC (2003) Progesterone and its derivatives dihydroprogesterone and tetrahydroprogesterone reduce myelin fiber morphological abnormalities and myelin fiber loss in the sciatic nerve of aged rats. Neurobiol Aging 24:853–860CrossRefPubMedGoogle Scholar
  8. Bagowski CP, Myers JW, Ferrell JE (2001) The classical progesterone receptor associates with p42 MAPK and is involved in phosphatidylinositol 3-kinase signaling in Xenopus oocytes. J Biol Chem 276:37708–37714CrossRefPubMedGoogle Scholar
  9. Bai W, Rowan BG, Allgood VE, O’Malley BW, Weigel NL (1997) Differential phosphorylation of chicken progesterone receptor in hormone-dependent and ligand-independent activation. J Biol Chem 272:10457–10463CrossRefPubMedGoogle Scholar
  10. Balleine RL, Hunt SM, Clarke CL (1999) Coexpression of alternatively spliced estrogen and progesterone receptor transcripts in human breast cancer. J Clin Endocrinol Metab 84:1370–1377CrossRefPubMedGoogle Scholar
  11. Barlow GM, Micales B, Lyons GE, Korenberg JR (2001) Down syndrome cell adhesion molecule is conserved in mouse and highly expressed in the adult mouse brain. Cytogenet Cell Genet 94:155–162CrossRefPubMedGoogle Scholar
  12. Bastianetto S, Monnet F, Junien JL, Quirion R (1999) Steroidal modulation of sigma receptor function. In: Baulieu EE, Robel P, Schumacher M (eds) Neurosteroids. A new regulatory function in the nervous system. Humana Press, Totowa, New Jersey, pp 191–205Google Scholar
  13. Baulieu EE, Godeau JF, Schorderet M, Schorderet-Slatkine S (1978) Steroid induced meiotic division in Xenopus laevis oocytes: surface and calcium. Nature 275:593–598CrossRefPubMedGoogle Scholar
  14. Baulieu EE, Robel P, Schumacher M (2001) Neurosteroids: beginning of the story. Int Rev Neurobiol 46:1–32PubMedGoogle Scholar
  15. Bayaa M, Booth RA, Sheng Y, Liu XJ (2000) The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism. Proc Natl Acad Sci USA 97:12607–12612CrossRefPubMedGoogle Scholar
  16. Bayir H, Marion DW, Puccio AM, Wisniewski SR, Janesko KL, Clark RS, Kochanek PM (2004) Marked gender effect on lipid peroxidation after severe traumatic brain injury in adult patients. J Neurotrauma 21:1–8CrossRefPubMedGoogle Scholar
  17. Beaujean D, Do R, Galas L, Mensah N, Fredriksson R, Larhammar D, Fournier A, Luu T, Pelletier G, Vaudry H (2002) Neuropeptide Y inhibits the biosynthesis of sulfated neurosteroids in the hypothalamus through activation of Y(1) receptors. Endocrinology 143:1950–1963CrossRefPubMedGoogle Scholar
  18. Beck CA, Weigel NL, Moyer ML, Nordeen SK, Edwards DP (1993) The progesterone antagonist RU486 acquires agonist activity upon stimulation of cAMP signaling pathways. Proc Natl Acad Sci USA 90:4441–4445PubMedGoogle Scholar
  19. Behl C, Trapp T, Skutella T, Holsboer F (1997) Protection against oxidative stress-induced neuronal cell death — a novel role for RU486. Eur J Neurosci 9:912–920PubMedGoogle Scholar
  20. Belanoff JK, Flores BH, Kalezhan M, Sund B, Schatzberg AF (2001) Rapid reversal of psychotic depression using mifepristone. J Clin Psychopharmacol 21:516–521CrossRefPubMedGoogle Scholar
  21. Belanoff JK, Jurik J, Schatzberg LD, DeBattista C, Schatzberg AF (2002a) Slowing the progression of cognitive decline in Alzheimer’s disease using mifepristone. J Mol Neurosci 19:201–206CrossRefPubMedGoogle Scholar
  22. Belanoff JK, Rothschild AJ, Cassidy F, DeBattista C, Baulieu EE, Schold C, Schatzberg AF (2002b) An open label trial of C-1073 (mifepristone) for psychotic major depression. Biol Psychiatry 52:386–392CrossRefPubMedGoogle Scholar
  23. Bergeron R, de Montigny C, Debonnel G (1996) Potentiation of neuronal NMDA response induced by dehydroepiandrosterone and its suppression by progesterone: effects mediated via sigma receptors. J Neurosci 16:1193–1202PubMedGoogle Scholar
  24. Bergeron R, de Montigny C, Debonnel G (1999) Pregnancy reduces brain sigma receptor function. Br J Pharmacol 127:1769–1776CrossRefPubMedGoogle Scholar
  25. Betz AL, Coester HC (1990) Effects of steroid on edema and sodium uptake of the brain during focal ischemia in rats. Stroke 21:199–204Google Scholar
  26. Beyer C, Damm N, Brito V, Küppers E (2002) Developmental expression of progesterone receptor isoforms in the mouse midbrain. Neuroreport 13:877–880CrossRefPubMedGoogle Scholar
  27. Blackmore PF, Beebe SJ, Danforth DR, Alexander N (1990) Progesterone and 17α-hydroxyprogesterone. Novel stimulators of calcium influx in human sperm. J Biol Chem 265:1376–1380PubMedGoogle Scholar
  28. Boonyaratanakornkit V, Scott MP, Ribon V, Sherman L, Anderson SM, Maller JL, Miller WT, Edwards DP (2001) Progesterone receptor contains a proline-rich motif that directly interacts with SH3 domains and activates c-Src family tyrosine kinases. Mol Cell 8:269–280CrossRefPubMedGoogle Scholar
  29. Bousios S, Karandrea D, Kittas C, Kitraki E (2001) Effects of gender and stress on the regulation of steroid receptor coactivator-1 expression in the rat brain and pituitary. J Steroid Biochem Mol Biol 78:401–407CrossRefPubMedGoogle Scholar
  30. Bramley T (2003) Non-genomic progesterone receptors in the mammalian ovary: some unresolved issues. Reproduction 125:3–15CrossRefPubMedGoogle Scholar
  31. Buddhikot M, Falkenstein E, Wehling M, Meizel S (1999) Recognition of a human sperm surface protein involved in the progesterone-initiated acrosome reaction by antisera against an endomembrane progesterone binding protein from porcine liver. Mol Cell Endocrinol 158:187–193CrossRefPubMedGoogle Scholar
  32. Buisson B, Bertrand D (1999) Steroid modulation of the nicotinic acetylcholine receptor. In: Baulieu EE, Robel P, Schumacher M (eds) Neurosteroids. A new regulatory function in the nervous system. Humana Press, Totowa, pp 207–223Google Scholar
  33. Camacho-Arroyo I, Perez-Palacios G, Pasapera AM, Cerbon MA (1994) Intracellular progesterone receptors are differentially regulated by sex steroid hormones in the hypothalamus and the cerebral cortex of the rabbit. J Steroid Biochem Mol Biol 50:299–303CrossRefPubMedGoogle Scholar
  34. Carlson JC, Gruber MY, Thompson JE (1983) A study of the interaction between progesterone and membrane lipids. Endocrinology 113:190PubMedGoogle Scholar
  35. Cenedella RJ, Sexton PS, Zhu XL (1999) Lens epithelia contain a high-affinity, membrane steroid hormone-binding protein. Invest Ophthalmol Vis Sci 40:1452–1459PubMedGoogle Scholar
  36. Cervantes M, Gonzalez-Vidal MD, Ruelas R, Escobar A, Morali G (2002) Neuroprotective effects of progesterone on damage elicited by acute global cerebral ischemia in neurons of the caudate nucleus. Arch Med Res 33:6–14CrossRefPubMedGoogle Scholar
  37. Chan JR, Phillips LJ, Glaser M (1998) Glucocorticoids and progestins signal the initiation and enhance the rate of myelin formation. Proc Natl Acad Sci USA 95:10459–10464CrossRefPubMedGoogle Scholar
  38. Chan JR, Rodriguez-Waitkus PM, Ng BK, Liang P, Glaser M (2000) Progesterone synthesized by Schwann cells during myelin formation regulates neuronal gene expression. Mol Biol Cell 11:2283–2295PubMedGoogle Scholar
  39. Charlier TD, Balthazart J, Ball GF (2003) Sex differences in the distribution of the steroid receptor coactivator SRC-1 in the song control nuclei of male and female canaries. Brain Res 959:263–274CrossRefPubMedGoogle Scholar
  40. Chauchereau A, Amazit L, Quesne M, Guiochon M, Milgrom E (2003) Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. J Biol Chem 278:12335–12343CrossRefPubMedGoogle Scholar
  41. Choi DW (1993) Nitric oxide: foe or friend to te injured brain ? Proc Natl Acad Sci USA 90:9741–9743PubMedGoogle Scholar
  42. Clarke PGH (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181:195–213CrossRefPubMedGoogle Scholar
  43. Coirini H, Gouezou M, Liere P, Delespierre B, Pianos A, Eychenne B, Schumacher M, Guennoun R (2002) 3β-hydroxysteroid dehydrogenase expression in rat spinal cord. Neuroscience 113:883–891CrossRefPubMedGoogle Scholar
  44. Coirini H, Gouézou M, Delespierre B, Schumacher M, Guennoun R (2003a) 3β-hydroxysteroid dehydrogenase isomerase in the rat sciatic nerve: kinetic analysis and regulation by steroids. J Steroid Biochem Mol Biol 85:89–94CrossRefPubMedGoogle Scholar
  45. Coirini H, Gouezou M, Delespierre B, Liere P, Pianos A, Eychenne B, Schumacher M, Guennoun R (2003b) Characterization and regulation of the 3β-hydroxysteroid dehydrogenase isomerase enzyme in the rat sciatic nerve. J Neurochem 84:119–126CrossRefPubMedGoogle Scholar
  46. Conneely OM, Lydon JP (2000) Progesterone receptors in reproduction: functional impact of the A and B isoforms. Steroids 65:571–577CrossRefPubMedGoogle Scholar
  47. Conneely OM, Mulac J, DeMayo F, Lydon JP, O’Malley BW (2002) Reproductive functions of progesterone receptors. Recent Prog Horm Res 57:339–355CrossRefPubMedGoogle Scholar
  48. Conneely OM, Jericevic BM, Lydon JP (2003) Progesterone receptors in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 8:205–214CrossRefPubMedGoogle Scholar
  49. Covey DF, Evers AS, Mennerick S, Zorumski CF, Purdy RH (2001) Recent developments in structure-activity relationships for steroid modulators of GABA(A) receptors. Brain Res Rev 37:91–97CrossRefPubMedGoogle Scholar
  50. Darbandi-Tonkabon R, Hastings WR, Zeng CM, Akk G, Manion BD, Bracamontes JR, Steinbach JH, Mennerick SJ, Covey DF, Evers AS (2003) Photoaffinity labeling with a neuroactive steroid analogue. 6-azi-pregnanolone labels voltage-dependent anion channel-1 in rat brain. J Biol Chem 278:13196–13206CrossRefPubMedGoogle Scholar
  51. Darbandi-Tonkabon R, Manion BD, Hastings WR, Craigen WJ, Akk G, Bracamontes JR, He Y, Sheiko TV, Steinbach JH, Mennerick SJ, Covey DF, Evers AS (2004) Neuroactive steroid interactions with voltage-dependent anion channels: lack of relationship to GABAA receptor modulation and anesthesia. J Pharmacol Exp Ther 308:502–511CrossRefPubMedGoogle Scholar
  52. De Nicola AF, Labombarda F, Gonzalez SL, Gonzalez Deniselle MC, Guennoun R, Schumacher M (2003) Steroid effects on glial cells: detrimental or protective for spinal cord injury? Ann N Y Acad Sci 1007:317–328.CrossRefPubMedGoogle Scholar
  53. Debonnel G, Bergeron R, de Montigny C (1996) Potentiation by dehydroepiandrosterone of the neuronal response to N-methyl-D-aspartate in the CA3 region of the rat dorsal hippocampus: an effect mediated via sigma receptors. J Endocrinol 150Suppl:S33–S42CrossRefPubMedGoogle Scholar
  54. DeMarzo AM, Beck CA, Onate SA, Edwards DP (1991) Dimerization of mammalian progesterone receptors occurs in the absence of DNA and is related to the release of the 90-kDa heat shock protein. Proc Natl Acad Sci USA 88:72–76PubMedGoogle Scholar
  55. DeMarzo AM, Onate SA, Nordeen SK, Edwards DP (1992) Effects of the steroid antagonist RU486 on dimerization of the human progesterone receptor. Biochemistry 31:10491–10501CrossRefPubMedGoogle Scholar
  56. Désarnaud F, Do T, Brown AM, Lemke G, Suter U, Baulieu EE, Schumacher M (1998) Progesterone stimulates the activity of the promoters of peripheral myelin protein-22 and protein zero genes in Schwann cells. J Neurochem 71:1765–1768PubMedGoogle Scholar
  57. Dijkema R, Schoonen WG, Teuwen R, van der Struik E, de Ries RJ, van der Kar BA, Olijve W (1998) Human progesterone receptor A and B isoforms in CHO cells. I. Stable transfection of receptor and receptor-responsive reporter genes: transcription modulation by (anti)progestagens. J Steroid Biochem Mol Biol 64:147–156CrossRefPubMedGoogle Scholar
  58. Djebaili M, Hoffman SW, Stein DG (2004) Allopregnanolone and progesterone decrease cell death and cognitive deficits after contusion of the rat pre-frontal cortex. Neuroscience 123:349–359CrossRefPubMedGoogle Scholar
  59. Duchen LW, Strich SJ (1968) An hereditary motor neurone disease with progressive denervation of muscle in the mouse: the mutant ‘wobbler’. J Neurol Neurosurg Psychiat 31:535–542PubMedGoogle Scholar
  60. Dusart I, Airaksinen MS, Sotelo C (1997) Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. J Neurosci 17:3710–3726PubMedGoogle Scholar
  61. Edwards DP, Leonhardt SA, Gass H (2000) Novel mechanisms of progesterone antagonists and progesterone receptor. J Soc Gynecol Investig 7:S22–S24CrossRefPubMedGoogle Scholar
  62. Edwards DP, Wardell SE, Boonyaratanakornkit V (2003) Progesterone receptor interacting coregulatory proteins and cross talk with cell signaling pathways. J Steroid Biochem Mol Biol 83:173–186CrossRefGoogle Scholar
  63. Ekins S, Schuetz E (2002) The PXR crystal structure: the end of the beginning. Trends Pharmacol Sci 23:49–50CrossRefPubMedGoogle Scholar
  64. Falkenstein E, Meyer C, Eisen C, Scriba PC, Wehling M (1996) Full-length cDNA sequence of a progesterone membrane-binding protein from porcine vascular smooth muscle cells. Biochem Biophys Res Commun 229:86–89CrossRefPubMedGoogle Scholar
  65. Falkenstein E, Heck M, Gerdes D, Grube D, Christ M, Weigel M, Buddhikot M, Meizel S, Wehling M (1999) Specific progesterone binding to a membrane protein and related nongenomic effects on Ca2+-fluxes in sperm. Endocrinology 140:5999–6002CrossRefPubMedGoogle Scholar
  66. Fang X, Wong S, Mitchell BF (2002) Messenger RNA for progesterone receptor isoforms in the late-gestation rat uterus. Am J Physiol Endocrinol Metab 283:E1167–E1172PubMedGoogle Scholar
  67. Ferrell JEJ (1999) Xenopus oocyte maturation: new lessons from a good egg. BioEssays 21:833–842CrossRefPubMedGoogle Scholar
  68. Finidori-Lepicard J, Schorderet-Slatkine S, Hanoune J, Baulieu EE (1981) Progesterone inhibits membrane-bound adenylate cyclase in Xenopus laevis oocytes. Nature 292:255CrossRefPubMedGoogle Scholar
  69. Frye CA (1995) The neurosteroid 3at,5ta-THP has antiseizure and possible neuroprotective effects in an animal model of epilepsy. Brain Res 696:113–120CrossRefPubMedGoogle Scholar
  70. Garcia-Estrada J, Del Rio JA, Luquin S, Soriano E, Garcia-Segura LM (1993) Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury. Brain Res 628:271–278CrossRefPubMedGoogle Scholar
  71. Gehin M, Mark M, Dennefeld C, Dierich A, Gronemeyer H, Chambon P (2002) The function of TIF2/GRIP1 in mouse reproduction is distinct from those of SRC-1 and p/CIP. Mol Cell Biol 22:5923–5937CrossRefPubMedGoogle Scholar
  72. Gerdes D, Wehling M, Leube B, Falkenstein E (1998) Cloning and tissue expression of two putative steroid membrane receptors. Biol Chem 379:907–911PubMedGoogle Scholar
  73. Ghoumari AM, Dusart I, el-Etr M, Tronche F, Sotelo C, Schumacher M, Baulieu EE (2003a) Mifepristone (RU486) protects Purkinje cells from cell death in organotypic slice cultures of postnatal rat and mouse cerebellum. Proc Natl Acad Sci U S A 100:7953–7958CrossRefPubMedGoogle Scholar
  74. Ghoumari AM, Ibanez C, El E, Leclerc P, Eychenne B, O’Malley BW, Baulieu EE, Schumacher M (2003b) Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum. J Neurochem 86:848–859CrossRefPubMedGoogle Scholar
  75. Ghoumari AM, Wehrle R, De Zeeuw CI, Sotelo C, Dusart I (2002) Inhibition of protein kinase C prevents Purkinje cell death but does not affect axonal regeneration. J Neurosci 22:3531–3542PubMedGoogle Scholar
  76. Giangrande PH, Pollio G, Mcdonnell DP (1997) Mapping and characterization of the functional domains responsible for the differential activity of the A and B isoforms of the human progesterone receptor. J Biol Chem 272:32889–32900CrossRefPubMedGoogle Scholar
  77. Giangrande PH, Mcdonnell DP (1999) The A and B isoforms of the human progesterone receptor: two functionally different transcription factors encoded by a single gene. Recent Prog Horm Res 54:291–314PubMedGoogle Scholar
  78. Giangrande PH, Kimbrel EA, Edwards DP, Mcdonnell DP (2000) The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding. Mol Cell Biol 20:3102–3115CrossRefPubMedGoogle Scholar
  79. Giannoukos G, Szapary D, Smith CL, Meeker JE, Simons SS (2001) New antiprogestins with partial agonist activity: potential selective progesterone receptor modulators (SPRMs) and probes for receptor-and coregulator-induced changes in progesterone receptor induction properties. Mol Endocrinol 15:255–270CrossRefPubMedGoogle Scholar
  80. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141PubMedGoogle Scholar
  81. Godeau JF, Schorderet-Slatkine S, Hubert P, Baulieu EE (1978) Induction of maturation in Xenopus laevis oocytes by a steroid linked to a polymer. Proc Natl Acad Sci USA 75:2353–2357PubMedGoogle Scholar
  82. Gonzalez SL, Labombarda F, Gonzalez Deniselle MC, Guennoun R, Schumacher M, De Nicola AF (2004) Progesterone up-regulates neuronal brain-derived neurotrophic factor in the injured spinal cord. Neuroscience 125:605–614.CrossRefPubMedGoogle Scholar
  83. Gonzalez Deniselle MC, Gonzalez S, De Nicola AF (2001) Cellular basis of steroid neuroprotection in the Wobbler mouse, a model of motoneuron disease. Cell Mol Neurobiol 21:237–254CrossRefPubMedGoogle Scholar
  84. Gonzalez Deniselle MC, Lopez-Costa JJ, Saavedra JP, Pietranera L, Gonzalez SL, Garay L, Guennoun R, Schumacher M, De Nicola AF (2002) Progesterone neuroprotection in the wobbler mouse, a genetic model of spinal cord motor neuron disease. Neurobiol Dis 11:457–468CrossRefPubMedGoogle Scholar
  85. Gonzalez Deniselle MC, Lopez Costa JJ, Gonzalez SL, Labombarda F, Garay L, Guennoun R, Schumacher M, De Nicola AF (2003) Basis of progesterone protection in spinal cord neurodegeneration. J Steroid Biochem Mol Biol 83:199–209CrossRefGoogle Scholar
  86. Gonzalez-Vidal MD, Cervera-Gaviria M, Ruelas R, Escobar A, Morali G, Cervantes M (1998) Progesterone: protective effects on the cat hippocampal neuronal damage due to acute global cerebral ischemia. Arch Med Res 29:117–124PubMedGoogle Scholar
  87. Guennoun R, Fiddes RJ, Gouézou M, Lombès M, Baulieu EE (1995) A key enzyme in the biosynthesis of neurosteroids, 3β-hydroxysteroid dehydrogenase/A5-A4-isomerase (3β-HSD), is expressed in rat brain. Brain Res Mol Brain Res 30:287–300CrossRefPubMedGoogle Scholar
  88. Guennoun R, Schumacher M, Robert F, Delespierre B, Gouézou M, Eychenne B, Akwa Y, Robel P, Baulieu EE (1997) Neurosteroids: expression of functional 3β-hydroxysteroid dehydrogenase by rat sensory neurons and Schwann cells. Eur J Neurosci 9:2236–2247PubMedGoogle Scholar
  89. Guerra-Araiza C, Coyoy-Salgado A, Camacho-Arroyo I (2002) Sex differences in the regulation of progesterone receptor isoforms expression in the rat brain. Brain Res Bull 59:105–109PubMedGoogle Scholar
  90. Guerra-Araiza C, Villamar-Cruz O, Gonzalez-Arenas A, Chavira R, Camacho-Arroyo I (2003) Changes in progesterone receptor isoforms content in the rat brain during the oestrous cycle and after oestradiol and progesterone treatments. J Neuroendocrinol 15:984–990CrossRefPubMedGoogle Scholar
  91. Guiochon-Mantel A, Loosfelt H, Lescop P, Sar S, Atger M, Perrot-Applanat M, Milgrom E (1989) Mechanisms of nuclear localization of the progesterone receptor: evidence for interaction between monomers. Cell 57:1147–1154CrossRefPubMedGoogle Scholar
  92. Guiochon-Mantel A, Milgrom E (1993) Cytoplasmic-nuclear trafficking of steroid hormone receptors. Trends Endocrinol Metab 4:322–328CrossRefGoogle Scholar
  93. Guiochon-Mantel A (2000) Structure of the progesterone receptor and mode of action of progesterone. In: Sitruk-Ware R, Mishell DR (eds) Progestins and antiprogestins in clinical practice. Marcel Dekker, Basel, pp 1–13Google Scholar
  94. Gutai JP, Meyer WJ, Kowarski AA, Migeon CJ (1977) Twenty-four hour integrated concentrations of progesterone, 17-hydroxyprogesterone and cortisol in normal male subjects. J Clin Endocrinol Metab 44:116–120PubMedGoogle Scholar
  95. Hagihara K, Hirata S, Osada T, Hirai M, Kato J (1992) Distribution of cells containing progesterone receptor mRNA in the female rat di-and telencephalon: an in situ hybridization study. Brain Res Mol Brain Res 14:239–249CrossRefPubMedGoogle Scholar
  96. Hamano K, Iwasaki N, Takeya T, Takita H (1996) A quantitative analysis of rat central nervous system myelination using the immunohistochemical method for MBP. Brain Res Dev Brain Res 93:18–22CrossRefPubMedGoogle Scholar
  97. Hammes SR (2003) The further redefining of steroid-mediated signalling. Proc Natl Acad Sci USA 100:2168–2170CrossRefPubMedGoogle Scholar
  98. Hammond GL, Hirvonen J, Vihko R (1983) Progesterone, androstenedione, testosterone, Sadihydrotestosterone and androsterone concentrations in specific regions of the human brain. J Steroid Biochem 18:185–189CrossRefPubMedGoogle Scholar
  99. Hanner M, Moebius FF, Flandorfer A, Knaus HG, Striessnig J, Kempner E, Glossmann H (1996) Purification, molecular cloning, and expression of the mammalian sigmal-binding site. Proc Natl Acad Sci USA 93:8072–8077CrossRefPubMedGoogle Scholar
  100. Hernandez MC, Andres B, Holt I, Israel MA (1998) Cloning of human ENC-1 and evaluation of its expression and regulation in nervous system tumors. Exp Cell Res 242:470–477CrossRefPubMedGoogle Scholar
  101. Hirata S, Shoda T, Kato J, Hoshi K (2000) The novel isoform of the progesterone receptor cDNA in the human testis and detection of its mRNA in the human uterine endometrium. Oncology 59:39–44CrossRefPubMedGoogle Scholar
  102. Hirata S, Shoda T, Kato J, Hoshi K (2003a) Isoform/variant mRNAs for sex steroid hormone receptors in humans. Trends Endocrinol Metab 14:124–129CrossRefPubMedGoogle Scholar
  103. Hirata S, Shoda T, Kato J, Hoshi K (2003b) Novel isoforms of the mRNA for human female sex steroid hormone receptors. J Steroid Biochem Mol Biol 83:25–30CrossRefGoogle Scholar
  104. Hodges YK, Richer JK, Horwitz KB, Horwitz LD (1999) Variant estrogen and progesterone receptor messages in human vascular smooth muscle. Circulation 99:2688–2693PubMedGoogle Scholar
  105. Horwitz KB, Sartorius CA, Hovland AR, Jackson TA, Groshong SD, Tung L, Takimoto GS (1995) Surprises with antiprogestins: novel mechanisms of progesterone receptor action. In: Bock GR, Goode JA (eds) Non reproductive actions of sex steroids (CIBA Foundation Symposium 191). John Wiley, Chichester, pp 235–253Google Scholar
  106. Hovland AR, Powell RL, Takimoto GS, Tung L, Horwitz KB (1998) An N-terminal inhibitory function, IF, suppresses transcription by the A-isoform but not the B-isoform of human progesterone receptors. J Biol Chem 273:5455–5460CrossRefPubMedGoogle Scholar
  107. Ibanez C, Shields SA, Liere P, el-Etr M, Baulieu EE, Schumacher M, Franklin RJM (2004) Systemic progesterone administration results in a partial reversal of the age-associated decline in CNS remyelination following toxin-induced demyelination in male rats. Neuropathol Appl Neurobiol 30:80–89CrossRefPubMedGoogle Scholar
  108. Ikeda K, Klinkosz B, Greene T, Cedarbaum JM, Wong V, Lindsay RM, Mitsumoto H (1995) Effects of brain-derived neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann Neurol 37:505–511CrossRefPubMedGoogle Scholar
  109. Inoue T, Akahira JI, Takeyama J, Suzuki T, Darnel AD, Kaneko C, Kurokawa Y, Satomi S, Sasano H (2001) Spatial and topological distribution of progesterone receptor A and B isoforms during human development. Mol Cell Endocrinol 182:83–89CrossRefPubMedGoogle Scholar
  110. Inoue T, Akahira J, Suzuki T, Darnel AD, Kaneko C, Takahashi K, Hatori M, Shirane R, Kumabe T, Kurokawa Y, Satomi S, Sasano H (2002) Progesterone production and actions in the human central nervous system and neurogenic tumors. J Clin Endocrinol Metab 87:5325–5331CrossRefPubMedGoogle Scholar
  111. Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB (1997) The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol 11:693–705CrossRefPubMedGoogle Scholar
  112. Jacobsen BM, Richer JK, Schittone SA, Horwitz KB (2002) New human breast cancer cells to study progesterone receptor isoform ratio effects and ligand-independent gene regulation. J Biol Chem 277:27793–27800CrossRefPubMedGoogle Scholar
  113. Jezierski MK, Sohrabji F (2001) Neurotrophin expression in the reproductively senescent forebrain is refractory to estrogen stimulation. Neurobiol Aging 22:311–321CrossRefGoogle Scholar
  114. Jiang N, Chopp M, Stein DG, Feldblum S (1996) Progesterone is neuroprotective after transient middle cerebral artery occlusion in male rats. Brain Res 735:101–107CrossRefPubMedGoogle Scholar
  115. Jung-Testas I, Schumacher M, Robel P, Baulieu EE (1996) Demonstration of progesterone receptors in rat Schwann cells. J Steroid Biochem Mol Biol 58:77–82CrossRefPubMedGoogle Scholar
  116. Jung-Testas I, Do-Thi A, Koenig H, Desarnaud F, Shazand K, Schumacher M, Baulieu EE (1999) Progesterone as a neurosteroid: synthesis and actions in rat glial cells. J Steroid Biochem Mol Biol 69:97–107CrossRefPubMedGoogle Scholar
  117. Kalkhoven E, Wissink S, van der Saag PT, Van der Burg B (1996) Negative interaction between the RelA(p65)subunit of NF-kB and the progesterone receptor. J Biol Chem 271:6217–6224CrossRefPubMedGoogle Scholar
  118. Kalra PS, Kalra SP (1977) Circadian periodicities of serum androgens, progesterone, gonadotropins and luteinizing hormone-releasing hormone in male rats: the effects of hypothalamic deafferentation, castration and adrenalectomy. Endocrinology 101:1821–1827PubMedGoogle Scholar
  119. Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P (1990) Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J 9:1603–1614PubMedGoogle Scholar
  120. Kato J, Hirata S, Nozawa A, Mouri N (1993) The ontogeny of gene expression of progestin receptors in the female rat brain. J Steroid Biochem Mol Biol 47:173–182CrossRefPubMedGoogle Scholar
  121. Katzenellenbogen BS, Katzenellenbogen JA (2002) Defining the "S" in SERMs. Science 295:2380–2381CrossRefPubMedGoogle Scholar
  122. Ke FC, Ramirez VD (1990) Binding of progesterone to nerve cell membranes of rat brain using progesterone conjugated to 125I-bovine serum albumin as a ligand. J Neurochem 54:467–472PubMedGoogle Scholar
  123. Kekuda R, Prasad PD, Fei YJ, Leibach FH, Ganapathy V (1996) Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1). Biochem Biophys Res Commun 229:553–558CrossRefPubMedGoogle Scholar
  124. Kirkman-Brown JC, Barratt CLR, Publicover SJ (2003) Nifedipine reveals the existence of two discrete components of the progesterone-induced [Ca2+]i transient in human spermatozoa. Dev Biol 259:71–82CrossRefPubMedGoogle Scholar
  125. Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, McKee DD, Oliver BB, Willson TM, Zetterström RH, Perlmann T, Lehmann JM (1998) An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92:73–82CrossRefPubMedGoogle Scholar
  126. Kliewer SA, Goodwin B, Willson TM (2002) The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocrinol Rev 23:687–702CrossRefGoogle Scholar
  127. Knotts TA, Orkiszewski RS, Cook RG, Edwards DP, Weigel NL (2001) Identification of a phosphorylation site in the hinge region of the human progesterone receptor and additional amino-terminal phosphorylation sites. J Biol Chem 276:8475–8483CrossRefPubMedGoogle Scholar
  128. Koenig HL, Schumacher M, Ferzaz B, Do Thi AN, Ressouches A, Guennoun R, Jung-Testas I, Robel P, Akwa Y, Baulieu EE (1995) Progesterone synthesis and myelin formation by Schwann cells. Science 268:1500–1503PubMedGoogle Scholar
  129. Koliatsos VE, Clatterbuck RE, Winslow JW, Cayouette MH, Price DL (1993) Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron 10:359–367CrossRefPubMedGoogle Scholar
  130. Kraus WL, Weis KE, Katzenellenbogen BS (1995) Inhibitory cross-talk between steroid hormone receptors: differential targeting of estrogen receptor in the repression of its transcriptional activity by agonist-and antagonist-occupied progestin receptors. Mol Cell Biol 15:1847–1857PubMedGoogle Scholar
  131. Krebs CJ, Jarvis ED, Chan J, Lydon JP, Ogawa S, Pfaff DW (2000) A membrane-associated progesterone-binding protein, 25-Dx, is regulated by progesterone in brain regions involved in female reproductive behavior. Proc Natl Acad Sci USA 97:12816–12821CrossRefPubMedGoogle Scholar
  132. Labombarda F, Gonzalez S, Roig P, Lima A, Guennoun R, Schumacher M, De Nicola AF (2000a) Modulation of NADPH-diaphorase and glial fibrillary acidic protein by progesterone in astrocytes from normal and injured rat spinal cord. J Steroid Biochem Mol Biol 73:159–169CrossRefPubMedGoogle Scholar
  133. Labombarda F, Guennoun R, Gonzalez S, Roig P, Lima A, Schumacher M, De Nicola AF (2000b) Immunocytochemical evidence for a progesterone receptor in neurons and glial cells of the rat spinal cord. Neurosci Lett 288:29–32CrossRefPubMedGoogle Scholar
  134. Labombarda F, Gonzalez SL, Gonzalez DM, Guennoun R, Schumacher M, De Nicola AF (2002) Cellular basis for progesterone neuroprotection in the injured spinal cord. J Neurotrauma 19:343–355CrossRefPubMedGoogle Scholar
  135. Labombarda F, Gonzalez SL, Deniselle MC, Vinson GP, Schumacher M, De Nicola AF, Guennoun R (2003) Effects of injury and progesterone treatment on progesterone receptor and progesterone binding protein 25-Dx expression in the rat spinal cord. J Neurochem 87:902–913CrossRefPubMedGoogle Scholar
  136. Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA (2003) Neurosteroid modulation of GABAA receptors. Prog Neurobiol 71:67–80CrossRefPubMedGoogle Scholar
  137. Landgren S, Wang MD, Bäckström T, Johansson S (1998) Interaction between 3α-hydroxy-5α-pregnan-20-one and carbachol in the control of neuronal excitability in hippocampal slices of female rats in defined phases of the oestrus. Acta Physiol Scand 162:77–88CrossRefPubMedGoogle Scholar
  138. Lauber AH, Romano GJ, Pfaff DW (1991) Gene expression for estrogen and progesterone receptor mRNAs in rat brain and possible relations to sexually dimorphic functions. J Steroid Biochem Mol Biol 40:53–62CrossRefPubMedGoogle Scholar
  139. Léna C, Changeux JP (1993) Allosteric modulations of the nicotinic acetylcholine receptor. Trends Neurosci 16:181–186CrossRefPubMedGoogle Scholar
  140. Leo C, Chen JD (2000) The SRC family of nuclear receptor coactivators. Gene 245:1–11CrossRefPubMedGoogle Scholar
  141. Leonhardt SA, Boonyaratanakornkit V, Edwards DP (2003) Progesterone receptor transcription and non-transcription signaling mechanisms. Steroids 68:761–770CrossRefPubMedGoogle Scholar
  142. Li X, O’Malley BW (2003) Unfolding the action of progesterone receptors. J Biol Chem 278:39261–39264CrossRefPubMedGoogle Scholar
  143. Liu Z, Auboeuf D, Wong J, Chen JD, Tsai SY, Tsai MJ, O’Malley BW (2002) Coactivator/corepressor ratios modulate PR-mediated transcription by the selective receptor modulator RU486. Proc Natl Acad Sci U S A 99:7940–7944CrossRefPubMedGoogle Scholar
  144. Lösel R, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol H, Wehling M (2003) Nongenomic steroid action: controversies, questions, and answers. Physiol Rev 83:965–1016PubMedGoogle Scholar
  145. Lösel R, Wehling M (2003) Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4:46–56CrossRefPubMedGoogle Scholar
  146. Luconi M, Bonaccorsi L, Bini L, Liberatori S, Pallini V, Forti G, Baldi E (2002) Characterization of membrane nongenomic receptors for progesterone in human spermatozoa. Steroids 67:505–509CrossRefPubMedGoogle Scholar
  147. MacLusky NJ, McEwen BS (1980) Progestin receptors in rat brain: distribution and properties of cytoplasmic progestin-binding sites. Endocrinology 106:192–202PubMedGoogle Scholar
  148. Magnaghi V, Cavarretta I, Zucchi I, Susani L, Rupprecht R, Hermann B, Martini L, Melcangi RC (1999) Po gene expression is modulated by androgens in the sciatic nerve of adult male rats. Mol Brain Res 70:36–44CrossRefPubMedGoogle Scholar
  149. Magnaghi V, Cavarretta I, Galbiati M, Martini L, Melcangi RC (2001) Neuroactive steroids and peripheral myelin proteins. Brain Res Rev 37:360–371CrossRefPubMedGoogle Scholar
  150. Maller JL (2001) The elusive progesterone receptor in Xenopus oocytes. Proc Natl Acad Sci USA 98:8–10CrossRefPubMedGoogle Scholar
  151. Mani SK, Allen JM, Clark JH, Blaustein JD, O’Malley BW (1994) Convergent pathways for steroid hormone-and neurotransmitter-induced rat sexual behavior. Science 265:1246–1249PubMedGoogle Scholar
  152. Mani SK, Allen JM, Lydon JP, Mulac-Jericevic B, Blaustein JD, DeMayo FJ, Conneely O, O’Malley BW (1996) Dopamine requires the unoccupied progesterone receptor to induce sexual behavior in mice. Mol Endocrinol 10:1728–1737CrossRefPubMedGoogle Scholar
  153. Masuyama H, Hiramatsu Y, Mizutani Y, Inoshita H, Kudo T (2001) The expression of pregnane X receptor and its target gene, cytochrome P450 3A1, in perinatal mouse. Mol Cell Endocrinol 172:47–56CrossRefPubMedGoogle Scholar
  154. Matsumoto A (2002) Age-related changes in nuclear receptor coactivator immunoreactivity in motoneurons of the spinal nucleus of the bulbocavernosus of male rats. Brain Res 943:202–205CrossRefPubMedGoogle Scholar
  155. McCann DJ, Weissman AD, Su TP (1994) Sigma-1 and sigma-2 sites in rat brain: comparison of regional, ontogenetic, and subcellular patterns. Synapse 17:182–189CrossRefPubMedGoogle Scholar
  156. McCullers DL, Sullivan PG, Scheff SW, Herman JP (2002) Mifepristone protects CA1 hippocampal neurons following traumatic brain injury in rat. Neuroscience 109:219–230CrossRefPubMedGoogle Scholar
  157. Mcdonnell DP, Goldman ME (1994) RU486 exerts antiestrogenic activities through a novel progesterone receptor A form-mediated mechanism. J Biol Chem 269:11945–11949PubMedGoogle Scholar
  158. Mcdonnell DP, Shahbaz MM, Vegeto E, Goldman ME (1994) The human progesterone receptor A-form functions as a transcriptional modulator of mineralocorticoid receptor transcriptional activity. J Steroid Biochem Mol Biol 48:425–432CrossRefPubMedGoogle Scholar
  159. McKenna NJ, Lanz RB, O’Malley BW (1999) Nuclear receptor coregulators: cellular and molecular biology. Endocrinol Rev 20:321–344CrossRefGoogle Scholar
  160. Meijer OC, Steenbergen PJ, De K (2000) Differential expression and regional distribution of steroid receptor coactivators SRC-1 and SRC-2 in brain and pituitary. Endocrinology 141:2192–2199CrossRefPubMedGoogle Scholar
  161. Melcangi RC, Magnaghi V, Cavarretta I, Martini L, Piva F (1998) Age-induced decrease of glycoprotein Po and myelin basic protein gene expression in the rat sciatic nerve. Repair by steroid derivatives. Neuroscience 85:569–578CrossRefPubMedGoogle Scholar
  162. Melcangi RC, Azcoitia I, Ballabio M, Cavarretta I, Gonzalez LC, Leonelli E, Magnaghi V, Veiga S, Garcia-Segura LM (2003) Neuroactive steroids influence peripheral myelination: a promising opportunity for preventing or treating age-dependent dysfunctions of peripheral nerves. Prog Neurobiol 71:57–66CrossRefPubMedGoogle Scholar
  163. Mellon SH, Vaudry H (2001) Biosynthesis of neurosteroids and regulation of their synthesis. Int Rev Neurobiol 46:33–78PubMedGoogle Scholar
  164. Meyer C, Schmid R, Schmieding K, Falkenstein E, Wehling M (1998) Characterization of high affinity progesterone-binding membrane proteins by anti-peptide antiserum. Steroids 63:111–116CrossRefPubMedGoogle Scholar
  165. Meyer C, Schmid R, Scriba PC, Wehling M (1996) Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes. Eur J Biochem 239:726–731CrossRefPubMedGoogle Scholar
  166. Meyer ME, Pornon A, Ji J, Bocquel MT, Chambon P, Gronemeyer H (1990) Agonistic and antagonistic activities of RU486 on the function of the human progesterone receptor. EMBO J 9:3923–3932PubMedGoogle Scholar
  167. Migliaccio A, Piccolo D, Castoria G, Di Domenico M, Bilancio A, Lombardi M, Gong W, Beato M, Auricchio F (1998) Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J 17:2008–2018CrossRefPubMedGoogle Scholar
  168. Misao R, Sun WS, Iwagaki S, Fujimoto J, Tamaya T (1998) Identification of various exon-deleted progesterone receptor mRNAs in human endometrium and ovarian endometriosis. Biochem Biophys Res Commun 252:302–306CrossRefPubMedGoogle Scholar
  169. Misao R, Nakanishi Y, Sun WS, Iwagaki S, Fujimoto J, Tamaya T (2000) Identification of exon-deleted progesterone receptor mRNAs in human uterine endometrial cancers. Oncology 58:60–65CrossRefPubMedGoogle Scholar
  170. Misiti S, Schomburg L, Yen PM, Chin WW (1998) Expression and hormonal regulation of coactivator and corepressor genes. Endocrinology 139:2493–2500CrossRefPubMedGoogle Scholar
  171. Misrahi M, Venencie PY, Saugier-Veber P, Sar S, Dessen P, Milgrom E (1993) Structure of the human progesterone receptor gene. Biochem Biophys Acta 1216, 289–292PubMedGoogle Scholar
  172. Mitev YA, Wolf SS, Almeida OF, Patchev VK (2003) Developmental expression profiles and distinct regional estrogen responsiveness suggest a novel role for the steroid receptor coactivator SRC-1 as a discriminative amplifier of estrogen signalling in the rat brain. FASEB J, express article 10.1096/fj.02-0513fge published onlineGoogle Scholar
  173. Molenda HA, Griffin AL, Auger AP, McCarthy MM, Tetel MJ (2002) Nuclear receptor coactivators modulate hormone-dependent gene expression in brain and female reproductive behavior in rats. Endocrinology 143:436–444CrossRefPubMedGoogle Scholar
  174. Monnet FP, Mahe V, Robel P, Baulieu EE (1995) Neurosteroids, via sigma receptors, modulate the [3H]norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc Natl Acad Sci USA 92:3774–3778PubMedGoogle Scholar
  175. Moore LB, Maglich JM, McKee DD, Wisely B, Willson TM, Kliewer SA, Lambert MH, Moore JT (2002) Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors. Mol Endocrinol 16:977–986CrossRefPubMedGoogle Scholar
  176. Morrow AL, VanDoren MJ, Fleming R, Penland S (2001) Ethanol and neurosteroid interactions in the brain. Int Rev Neurobiol 46:349–377PubMedGoogle Scholar
  177. Mote PA, Balleine RL, McGowan EM, Clarke CL (1999) Colocalization of progesterone receptors A and B by dual immunofluorescent histochemistry in human endometrium during the menstrual cycle. J Clin Endocrinol Metab 84:2963–2971CrossRefPubMedGoogle Scholar
  178. Mote PA, Bartow S, Tran N, Clarke CL (2002) Loss of co-ordinate expression of progesterone receptors A and B is an early event in breast carcinogenesis. Breast Cancer Res Treat 72:163–172CrossRefPubMedGoogle Scholar
  179. Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP, Conneely OM (2000) Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science 289:1751–1754CrossRefPubMedGoogle Scholar
  180. Muller S, Hoege C, Pyrowolakis G, Jentsch S (2001) SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol 2:202–210CrossRefPubMedGoogle Scholar
  181. Muse ED, Jurevics H, Toews AD, Matsushima GK, Morell P (2001) Parameters related to lipid metabolism as markers of myelination in mouse brain. J Neurochem 76:77–86CrossRefPubMedGoogle Scholar
  182. Nishihara E, Yoshida-Komiya H, Chan CS, Liao L, Davis RL, O’Malley BW, Xu J (2003) SRC-1 null mice exhibit moderate motor dysfunctions and delayed development of cerebellar Purkinje cells. J Neurosci 23:213–222PubMedGoogle Scholar
  183. Nordeen SK, Bona BJ, Moyer ML (1993) Latent agonist activity of the steroid antagonist, RU486, is unmasked in cells treated with activators of protein kinase A. Mol Endocrinol 7:731–742CrossRefPubMedGoogle Scholar
  184. Notterpek LM, Bullock PN, Malek H, Fisher R, Rome LH (1993) Myelination in cerebellar slice cultures: development of a system amenable to biochemical analysis. J Neurosci Res 36:621–634CrossRefPubMedGoogle Scholar
  185. Ogata T, Nakamura Y, Tsuji K, Shibata T, Kataoka K (1993) Steroid hormones protect spinal cord neurons from glutamate toxicity. Neuroscience 55:445–449CrossRefPubMedGoogle Scholar
  186. Ogawa H, Nishi M, Kawata M (2001) Localization of nuclear coactivators p300 and steroid receptor coactivator 1 in the rat hippocampus. Brain Res 890:197–202CrossRefPubMedGoogle Scholar
  187. Ogle TF (2002) Progesterone-action in the decidual mesometrium of pregnancy. Steroids 67:1–14CrossRefPubMedGoogle Scholar
  188. Ogle TF, Dai D, George P, Mahesh VB (1998) Regulation of the progesterone receptor and estrogen receptor in decidua basalis by progesterone and estradiol during pregnancy. Biol Reprod 58:1188–1198PubMedGoogle Scholar
  189. Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357PubMedGoogle Scholar
  190. Onate SA, Boonyaratanakornkit V, Spencer TE, Tsai SY, Tsai MJ, Edwards DP, O’Malley BW (1998) The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J Biol Chem 273:12101–12108CrossRefPubMedGoogle Scholar
  191. Osman RA, Andria ML, Jones AD, Meizel S (1989) Steroid induced exocytosis: the human sperm acrosome reaction. Biochem Biophys Res Commun 160:828–833CrossRefPubMedGoogle Scholar
  192. Parthasarathy S, Morales AJ, Murphy AA (1994) Antioxidant: a new role for RU-486 and related compounds. J Clin Invest 94:1990–1995PubMedGoogle Scholar
  193. Phan VL, Urani A, Romieu P, Maurice T (2002) Strain differences in sigma(1) receptor-mediated behaviours are related to neurosteroid levels. Eur J Neurosci 15:1523–1534CrossRefPubMedGoogle Scholar
  194. Poukka H, Karvonen U, Janne OA, Palvimo JJ (2000) Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A 97:14145–14150CrossRefPubMedGoogle Scholar
  195. Power RF, Conneely OM, O’Malley BW (1992) New Insights into Activation of the Steroid Hormone Receptor Superfamily. Trends Pharmacol Sci 13:318–323CrossRefPubMedGoogle Scholar
  196. Prasad PD, Li HW, Fei YJ, Ganapathy ME, Fujita T, Plumley LH, Yang-Feng TL, Leibach FH, Ganapathy V (1998) Exon-intron structure, analysis of promoter region, and chromosomal localization of the human type 1 sigma receptor gene. J Neurochem 70:443–451PubMedGoogle Scholar
  197. Price DL, Cleveland DW, Koliatsos VE (1994) Motor neurone disease and animal models. Neurobiol Dis 1:3–11CrossRefPubMedGoogle Scholar
  198. Qiu M, Lange CA (2003) MAP kinases couple multiple functions of human progesterone receptors: degradation, transcriptional synergy, and nuclear association. J Steroid Biochem Mol Biol 85:147–157CrossRefPubMedGoogle Scholar
  199. Quirion R, Bowen WD, Itzhak Y, Junien JL, Musacchio JM, Rothman RB, Su TP, Tam SW, Taylor DP (1992) A proposal for the classification of sigma binding sites. Trends Pharmacol Sci 13:85–86CrossRefPubMedGoogle Scholar
  200. Raza FS, Takemori H, Tojo H, Okamoto M, Vinson GP (2001) Identification of the rat adrenal zona fasciculata/reticularis specific protein, inner zone antigen (IZAg), as the putative membrane progesterone receptor. Eur J Biochem 268:2141–2147CrossRefPubMedGoogle Scholar
  201. Reyna-Neyra A, Camacho-Arroyo I, Ferrera P, Arias C (2002) Estradiol and progesterone modify microtubule associated protein 2 content in the rat hippocampus. Brain Res Bull 58:607–612CrossRefPubMedGoogle Scholar
  202. Richer JK, Lange CA, Wierman AM, Brooks KM, Tung L, Takimoto GS, Horwitz KB (1998) Progesterone receptor variants found in breast cells repress transcription by wild-type receptors. Breast Cancer Res Treat 48:231–241CrossRefPubMedGoogle Scholar
  203. Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB (2002) Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem 277:5209–5218CrossRefPubMedGoogle Scholar
  204. Robel P, Schumacher M, Baulieu EE (1999) Neurosteroids: from definition and biochemistry to physiological function. In: Baulieu EE, Robel P, Schumacher M (eds) Neurosteroids. A new regulatory function in the nervous system. Humana Press, Totowa, pp 1–25Google Scholar
  205. Robert F, Guennoun R, Desarnaud F, Do-Thi A, Benmessahel Y, Baulieu EE, Schumacher M (2001) Synthesis of progesterone in Schwann cells: regulation by sensory neurons. Eur J Neurosci 13:916–924CrossRefPubMedGoogle Scholar
  206. Robyr D, Wolffe AP, Wahli W (2000) Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol Endocrinol 14:329–347CrossRefPubMedGoogle Scholar
  207. Roof RL, Duvdevani R, Stein DG (1993) Gender influences outcome of brain injury: progesterone plays a protective role. Brain Res 607:333–336CrossRefPubMedGoogle Scholar
  208. Roof RL, Duvdevani R, Braswell L, Stein DG (1994) Progesterone facilitates cognitive recovery and reduces secondary neuronal loss caused by cortical contusion injury in male rats. Exp Neurol 129:64–69CrossRefPubMedGoogle Scholar
  209. Roof RL, Duvdevani R, Heyburn JW, Stein DG (1996) Progesterone rapidly decreases brain edema: treatment delayed up to 24 hours is still effective. Exp Neurol 138:246–251CrossRefPubMedGoogle Scholar
  210. Roof RL, Hoffman SW, Stein DG (1997) Progesterone protects against lipid peroxidation following traumatic brain injury in rats. Mol Chem Neuropathol 31:1–11PubMedGoogle Scholar
  211. Rousseau-Merck MF, Misrahi M, Loosfelt H, Milgrom E, Berger R (1987) Localization of the human progesterone receptor gene to chromosome 11q22–q23. Hum Genet 77:280–282PubMedGoogle Scholar
  212. Rowan BG, O’Malley BW (2000) Progesterone receptor coactivators. Steroids 65:545–549CrossRefPubMedGoogle Scholar
  213. Rowan BG, Garrison N, Weigel NL, O’Malley BW (2000) 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol Cell Biol 20:8720–8730CrossRefPubMedGoogle Scholar
  214. Saner KJ, Welter BH, Zhang F, Hansen E, Dupont B, Wei Y, Price TM (2003) Cloning and expression of a novel, truncated, progesterone receptor. Mol Cell Endocrinol 200:155–163CrossRefPubMedGoogle Scholar
  215. Sartorius CA, Tung L, Takimoto GS, Horwitz KB (1993) Antagonist-Occupied Human Progesterone Receptors Bound to DNA Are Functionally Switched to Transcriptional Agonists by cAMP. J Biol Chem 268:9262–9266PubMedGoogle Scholar
  216. Sartorius CA, Melville MY, Hovland AR, Tung L, Takimoto GS, Horwitz KB (1994) A third transactivation function (AF3) of human progesterone receptors located in the unique N-terminal segment of the B-isoform. Mol Endocrinol 8:1347–1360CrossRefPubMedGoogle Scholar
  217. Schmidt BM, Gerdes D, Feuring M, Falkenstein E, Christ M, Wehling M (2000) Rapid, nongenomic steroid actions: A new age? Front Neuroendocrinol 21:57–94CrossRefPubMedGoogle Scholar
  218. Schumacher M, Coirini H, Robert F, Guennoun R, el-Etr M (1999) Genomic and membrane actions of progesterone: implications for reproductive physiology and behavior. Behav Brain Res 105:37–52CrossRefPubMedGoogle Scholar
  219. Schumacher M, Guennoun R, Mercier G, Desarnaud F, Lacor P, Benavides J, Ferzaz B, Robert F, Baulieu EE (2001) Progesterone synthesis and myelin formation in peripheral nerves. Brain Res Rev 37:343–359CrossRefPubMedGoogle Scholar
  220. Schumacher M, Robert F (2002) Progesterone: synthesis, metabolism, mechanisms of action and effects in the nervous system. In: Pfaff D, Arnold A, Etgen A, Fahrbach S, Rubin R (eds) Hormones, Brain and Behavior (vol. 3). Academic Press, San Diego, pp 683–745Google Scholar
  221. Selmin O, Lucier GW, Clark GC, Tritscher AM, Vanden Heuvel JP, Gastel JA, Walker NJ, Sutter TR, Bell DA (1996) Isolation and characterization of a novel gene induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver. Carcinogenesis 17:2609–2615PubMedGoogle Scholar
  222. Sendtner M, Holtmann B, Kolbeck R, Thoenen H, Barde YA (1992) Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360:757–759CrossRefPubMedGoogle Scholar
  223. Sereda MW, Meyer Z, Suter U, Uzma N, Nave KA (2003) Therapeutic administration of progesterone antagonist in a model of Charcot-Marie-Tooth disease (CMT-1A). Nat Med 9:1533–1537CrossRefPubMedGoogle Scholar
  224. Seth P, Fei YJ, Li HW, Huang W, Leibach FH, Ganapathy V (1998) Cloning and functional characterization of a sigma receptor from rat brain. J Neurochem 70:922–931PubMedGoogle Scholar
  225. Seyle H (1942) The anatgonism between anesthetic steroid hormones and pentamethylenetetrazol (metrazol). J Lab Clin Med 27:1051–1053Google Scholar
  226. Shi QX, Yuan YY, Roldan ER (1997) gamma-Aminobutyric acid (GABA) induces the acrosome reaction in human spermatozoa. Mol Hum Reprod 3:677–683CrossRefPubMedGoogle Scholar
  227. Shiozawa T, Shih HC, Miyamoto T, Feng YZ, Uchikawa J, Itoh K, Konishi I (2003) Cyclic changes in the expression of steroid receptor coactivators and corepressors in the normal human endometrium. J Clin Endocrinol Metab 88:871–878CrossRefPubMedGoogle Scholar
  228. Shyamala G, Yang X, Silberstein G, Barcellos H, Dale E (1998) Transgenic mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands. Proc Natl Acad Sci USA 95:696–701CrossRefPubMedGoogle Scholar
  229. Shyamala G, Yang X, Cardiff RD, Dale E (2000) Impact of progesterone receptor on cell-fate decisions during mammary gland development. Proc Natl Acad Sci USA 97:3044–3049CrossRefPubMedGoogle Scholar
  230. Simons SS (2003) The importance of being varied in steroid receptor transactivation. Trends Pharmacol Sci 24:253–259PubMedGoogle Scholar
  231. Smith SS (1991) Progesterone administration attenuates excitatory amino acid responses of cerebellar Purkinje cells. Neuroscience 42:309–320CrossRefPubMedGoogle Scholar
  232. Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1997) Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198CrossRefPubMedGoogle Scholar
  233. Spitz IM (2003) Progesterone antagonists and progesterone receptor modulators: an overview. Steroids 68:981–993CrossRefPubMedGoogle Scholar
  234. Stanczyk FZ (2003) All progestins are not created equal. Steroids 68:879–890CrossRefPubMedGoogle Scholar
  235. Stein DG (2001) Brain damage, sex hormones and recovery: a new role for progesterone and estrogen? Trends Neurosci 24:386–391CrossRefPubMedGoogle Scholar
  236. Su TP, London ED, Jaffe JH (1988) Steroid binding at s receptors suggests a link between endocrine, nervous, and immune systems. Science 240:219–221PubMedGoogle Scholar
  237. Suzuki Y, Shimozawa N, Imamura A, Kondo N, Orii T (1996) Peroxisomal disorders: clinical aspects. Ann NY Acad Sci 804:442–449PubMedGoogle Scholar
  238. Szabo M, Kilen SM, Nho SJ, Schwartz NB (2000) Progesterone receptor A and B messenger ribonucleic acid levels in the anterior pituitary of rats are regulated by estrogen. Biol Reprod 62:95–102PubMedGoogle Scholar
  239. Takimoto GS, Tung L, Abdel H, Abel MG, Sartorius CA, Richer JK, Jacobsen BM, Bain DL, Horwitz KB (2003) Functional properties of the N-terminal region of progesterone receptors and their mechanistic relationship to structure. J Steroid Biochem Mol Biol 85:209–219CrossRefPubMedGoogle Scholar
  240. Thomas AJ, Nockels RP, Pan HQ, Shaffrey CI, Chopp M (1999) Progesterone is neuroprotective after acute experimental spinal cord trauma in rats. Spine 24:2134–2138CrossRefPubMedGoogle Scholar
  241. Tischkau SA, Ramirez VD (1993) A specific membrane binding protein for progesterone in rat brain: sex differences and induction by estrogen. Proc Natl Acad Sci U S A 90:1285–1289PubMedGoogle Scholar
  242. Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, Bock R, Klein R, Schütz G (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23:99–103CrossRefPubMedGoogle Scholar
  243. Tsai MJ, O’Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486CrossRefPubMedGoogle Scholar
  244. Tsuzaka K, Ishiyama T, Pioro EP, Mitsumoto H (2001) Role of brain-derived neurotrophic factor in wobbler mouse motor neuron disease. Muscle Nerve 24:474–480CrossRefPubMedGoogle Scholar
  245. Tyagi RK, Amazit L, Lescop P, Milgrom E, Guiochon-Mantel A (1998) Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate. Mol Endocrinol 12:1684–1695CrossRefPubMedGoogle Scholar
  246. Ukena K, Kohchi C, Tsutsui K (1999) Expression and activity of 3β-hydroxysteroid dehydrogenase/A5-A4-isomerase in the rat Purkinje neuron during neonatal life. Endocrinology 140:805–813CrossRefPubMedGoogle Scholar
  247. Valera S, Ballivet M, Bertrand D (1992) Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 89:9949–9953PubMedGoogle Scholar
  248. Vegeto E, Shahbaz MM, Wen DX, Goldman ME, O’Malley BW, Mcdonnell DP (1993) Human progesterone receptor A form is a cell-and promoter-specific repressor of human progesterone receptor B function. Mol Endocrinol 7:1244–1255CrossRefPubMedGoogle Scholar
  249. Wagner AK, Bayir H, Ren D, Puccio AM, Zafonte RD, Kochanek PM (2004) Relationship between cerebrospinal fluid markers of excitotoxicity, ischemia, and oxidative damage after severe TBI: the impact of gender, age and hypothermia. J Neurotrauma 21:125–136CrossRefPubMedGoogle Scholar
  250. Wagner BL, Norris JD, Knotts TA, Weigel NL, Mcdonnell DP (1998) The nuclear corepressors NCoR and SMRT are key regulators of both ligand-and 8-bromo-cyclic AMP-dependent transcriptional activity of the human progesterone receptor. Mol Cell Biol 18:1369–1378PubMedGoogle Scholar
  251. Wardell SE, Boonyaratanakornkit V, Adelman JS, Aronheim A, Edwards DP (2002) Jun dimerization protein 2 functions as a progesterone receptor N-terminal domain coactivator. Mol Cell Biol 22:5451–5466CrossRefPubMedGoogle Scholar
  252. Watkins RE, Wisely GB, Moore LB, Collins JL, Lambert MH, Williams SP, Willson TM, Kliewer SA, Redinbo MR (2001) The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 292:2329–2333CrossRefPubMedGoogle Scholar
  253. Watkins RE, Davis S, Lambert MH, Redinbo MR (2003) Coactivator binding promotes the specific interaction between ligand and the pregnane X receptor. J Mol Biol 331:815–828CrossRefPubMedGoogle Scholar
  254. Wei LL, Hawkins P, Baker C, Norris B, Sheridan PL, Quinn PG (1996) An amino-terminal truncated progesterone receptor isoform, PRc, enhances progestin-induced transcriptional activity. Mol Endocrinol 10:1379–1387CrossRefPubMedGoogle Scholar
  255. Weigel NL (1996) Steroid hormone receptors and their regulation by phosphorylation. Biochem J 319:657–667PubMedGoogle Scholar
  256. Weill-Engerer S, David JP, Sazdovitch V, Liere P, Eychenne B, Pianos A, Schumacher M, Delacourte A, Baulieu EE, Akwa Y (2002) Neurosteroid quantification in human brain regions: comparison between Alzheimer’s and non-demented patients. J Clin Endocrinol Metab 87:5138–5143CrossRefPubMedGoogle Scholar
  257. Wen DX, Xu YF, Mais DE, Goldman ME, Mcdonnell DP (1994) The A and B isoforms of the human progesterone receptor operate through distinct signaling pathways within target cells. Mol Cell Biol 14:8356–8364PubMedGoogle Scholar
  258. Xu J, Qiu Y, DeMayo FJ, Tsai SY, Tsai MJ, O’Malley BW (1998) Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279:1922–1925CrossRefPubMedGoogle Scholar
  259. Xu J, O’Malley BW (2002) Molecular mechanisms and cellular biology of the steroid receptor coactivator (SRC) family in steroid receptor function. Rev Endocr Metab Disord 3:185–192CrossRefPubMedGoogle Scholar
  260. Yan Q, Elliott J, Snider WD (1992) Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 360:753–755CrossRefPubMedGoogle Scholar
  261. Yang J, Serres C, Philibert D, Robel P, Baulieu EE (1994) Progesterone and RU486: opposing effects on human sperm. Proc Natl Acad Sci USA 91:529–533PubMedGoogle Scholar
  262. Yeates C, Hunt SM, Balleine RL, Clarke CL (1998) Characterization of a truncated progesterone receptor protein in breast tumors. J Clin Endocrinol Metab 83:460–467CrossRefPubMedGoogle Scholar
  263. Yu WH (1989) Survival of motoneurons following axotomy is enhanced by lactation or by progesterone treatment. Brain Res 491:379–382CrossRefPubMedGoogle Scholar
  264. Zhang X, Jeyakumar M, Petukhov S, Bagchi MK (1998) A nuclear receptor corepressor modulates transcriptional activity of antagonist-occupied steroid hormone receptor. Mol Endocrinol 12:513–524CrossRefPubMedGoogle Scholar
  265. Zhu Y, Thomas P (2003) Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc Natl Acad Sci USA 100:2237–2242CrossRefPubMedGoogle Scholar
  266. Zhu Y, Rice CD, Pang Y, Pace M, Thomas P (2003) Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc Natl Acad Sci USA 100:2231–2236CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • M. Schumacher
    • 1
  • A. Ghoumari
    • 1
  • R. Guennoun
    • 1
  • F. Labombarda
    • 2
  • S.L. Gonzalez
    • 2
  • M.C. Gonzalez Deniselle
    • 2
  • C. Massaad
    • 1
  • J. Grenier
    • 1
  • K.M. Rajkowski
    • 1
  • F. Robert
    • 1
  • E.E. Baulieu
    • 1
  • A.F. De Nicola
    • 2
  1. 1.INSERM U488Kremlin-BicêtreFrance
  2. 2.Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina ExperimentalUniversity of Buenos AiresArgentina

Personalised recommendations