Advertisement

Modelling the Earth’s gravity field using wavelet frames

  • I. Panet
  • O. Jamet
  • M. Diament
  • A. Chambodut
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 129)

Abstract

Present and forthcoming satellite gravity missions provide us with new and unique datasets in order to model the Earth’s gravity field at 100 km resolution. These new models will bring significant advances in our understanding of the Earth’s structure and dynamics. However, it will be necessary to combine satellite data with surface and airborne measurements in order to improve the short wavelength components of the gravity field. The derived regional models with an increased spatial resolution will be used to carry out geodynamic studies at lithospheric or crustal scale. Whereas the classical spherical harmonics decomposition leads to strong numerical difficulties when dealing with local features, wavelet-based representations can handle the local scales as well as the global ones; they should thus be extremely useful to derive local models taking into account data of different origins. Here we describe the construction of wavelet frames on the sphere based on the Poisson multipole wavelet. Those wavelets are of special interest for field modelling since their shape is linked to the potential of multipole sources, and their scaling parameter to the multipole depth (Holschneider et al., 2003). We also compute a local wavelet decomposition of the gravity field at high resolution from evenly and unevenly distributed data using least squares collocation. Our first results show the efficiency of such a representation.

Keywords

Spherical wavelets multipoles frame covariances 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertella, A., Sanso, F. and Sneeuw, N., 1999. Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere. J. of Geod., 73, 436–447.CrossRefGoogle Scholar
  2. Chambodut, A., Panet, I., Mandea, M., Diament, M., Jamet, O., Holschneider, M.. Wavelet frames: an alternative to the spherical harmonics representation of potential fields. Geophys. Journ. Int., submitted.Google Scholar
  3. De Santis, A. and J.M., Torta, 1997. Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation, J. of Geod., 71, 526–532.CrossRefGoogle Scholar
  4. Freeden, W., T., Gervens and M., Schreiner, M., 1998. Constructive Approximation on the Sphere (With Applications to Geomathematics), Oxford Science Publication, Clarendon Press, Oxford.Google Scholar
  5. Holschneider, M., A., Chambodut and M., Mandea, 2003. From global to regional analysis of the magnetic field on the sphere using wavelet frames, Phys. Earth Planet. Inter., 135, 107–124.CrossRefGoogle Scholar
  6. Hwang, Ch., 1993. Spectral analysis using orthonormal functions with a case study on the sea surface topography. Geoph. Journ. Int., 115, 1148–1160.Google Scholar
  7. Kaula, W.M., 1966. Theory of satellite geodesy, Waltham, Blaisdell.Google Scholar
  8. Kenner, H., 1976. Geodesic math and how to use it, Berleley CA: University of California Press.Google Scholar
  9. Lemoine, KG. et al. 1998. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA/TP-1998-206861, Greenbelt, Maryland.Google Scholar
  10. Mallat, S., 1999. A wavelet tour of signal processing. Academic Press, 2nd edition.Google Scholar
  11. Martelet, G., Sailhac, P., Moreau, F., Diament, M., 2001. Characterization of geological boundaries using 1D wavelet transform on gravity data: Theory and application to the Himalayas. Geophysics, 66,4, 1116–1129.CrossRefGoogle Scholar
  12. Moritz, H., 1989. Advanced physical geodesy, Karlsruhe: Wichmann, 2. ed.Google Scholar
  13. Sailhac, P., Galdeano, A., Gibert, D., Moreau, F., Delor, C., 2000. Identification of sources of potential fields with the continuous wavelet transform: Complex wavelets and application to aeromagnetic profiles in French Guiana. J. Geophys. Res., 105,B8, 19455–19475.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • I. Panet
    • 1
    • 2
  • O. Jamet
    • 1
  • M. Diament
    • 2
  • A. Chambodut
    • 3
  1. 1.Laboratoire de Recherche en GéodésieInstitut Géographique NationalFrance
  2. 2.Laboratoire de Gravimétrie et Géodynamique, Département de Géophysique Spatiale et PlanétaireInstitut de Physique du Globe de ParisFrance
  3. 3.Laboratoire de Géomagnétisme et PaléomagnétismeInstitut de Physique du Globe de ParisFrance

Personalised recommendations