Advertisement

GOCE Gravity Field Processing

  • R. Pail
  • W.-D. Schuh
  • M. Wermuth
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 129)

Abstract

A concept for an operable software system for the processing of a high-accuracy, high-resolution spherical harmonic model of the Earth’s gravity field from GOCE observables (satellite gravity gradiometry (SGG), satellite-to-satellite tracking in high-low mode (hl-SST)) is presented. The software architecture and the data flow are briefly described, and the main software components and recent developments are presented. Selected numerical simulations are performed to demonstrate the functionality of the software. They are based on a realistic mission scenario. Special emphasis is placed on the impact of the new GOCE mission design, i.e. the gravity gradients defined in the Gradiometer Reference Frame (GRF), which deviates from the actual flight direction (Local Orbit Reference Frame; LORF) by a few degrees, and the resulting modified error budget of the GOCE gradiometer. Additionally, the benefits of a combination of the SGG and hl-SST components are presented and discussed.

Keywords

GOCE Gravity field modeling Gravity gradients Gradiometer Reference Frame Energy integral Combined solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badura, T., Klostius, R., Gruber, C., Sakulin, C. (2004). Derivation of a CHAMP only global gravity field model applying the Energy Integral Approach. Submitted to: Stud. Geophy. Geod. (in review).Google Scholar
  2. Cesare, S. (2002). Performance requirements and budgets for the gradiometric mission. Technical Note, GOC-TN-AI-0027, Alenia Spazio, Turin, Italy.Google Scholar
  3. ESA (1999). Gravity Field and Steady-State Ocean Circulation Mission. Reports for mission selection, The four candidate Earth explorer core missions, SP-1233(1), European Space Agency, Noordwijk.Google Scholar
  4. Földvary, L., Svehla, D., Gerlach, Ch., Wermuth, M., Gruber, T., Rummel, R., Rothacher, M., Frommknecht, B., Peters, T., Steigenberger, P. (2003). Gravity Model TUM-2Sp Based on the Energy Balance Approach and Kinematic CHAMP Orbits. Proc. 2nd CHAMP Science Meeting, GFZ Potsdam, Sprt. 1–4, 2003 (in print).Google Scholar
  5. Klees, R., Koop, R., Visser, P.N.A.M., and van den Ussel, J. (2000). Efficient gravity field recovery from GOCE gravity gradient observations. J. Geod., 74, pp. 561–571.CrossRefGoogle Scholar
  6. Metzler, B. (2004). Core Solver: Combined SST+SGG solution. ASAP-Project “GOCE DAPC Graz”, Bridging Phase, Final Report, Contract ASAP-CO-008/03, WP Ib-4.4, pp. 167–180, Graz.Google Scholar
  7. Migliaccio, R., Reguzzoni, M, and Sansó, F. (2003). Space-wise approach to satellite gravity field determinations in the presence of coloured noise. Submitted to J. Geod.Google Scholar
  8. Pail, R. (2002). In-orbit calibration and local gravity field continuation problem. ESA-Project “From Eötvös to mGal+”, Final Report, ESA/ESTEC Contract 14287/00/NL/DC, WP 1, pp. 9–112, European Space Agency, Noordwijk.Google Scholar
  9. Pail, R. (2004). GOCE Quick-Look Gravity Field Analysis: Treatment of gravity gradients defined in the Gradiometer Reference Frame. Proceedings of the 2nd Internat. GOCE User Workshop, Frascati, March 2004.Google Scholar
  10. Pail, R., Lackner, B., and Preimesberger, T. (2003). Quick-Look Gravity Field Analysis (QL-GFA). DAPC Graz, Phase Ia, Final Report, WP Ia-4.1, pp. 107–161, Graz.Google Scholar
  11. Pail, R., and Plank, G. (2002). Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform. J. Geod., 76, pp. 462–474.CrossRefGoogle Scholar
  12. Pail, R., and Plank, G. (2004). GOCE Gravity Field Processing Strategy. Stud. Geophys. Geod., 48, pp. 289–308.CrossRefGoogle Scholar
  13. Pail, R., and Wermuth, M. (2003). GOCE SGG and SST quick-look gravity field analysis. Advances in Geosciences, 1, pp. 5–9.Google Scholar
  14. Plank, G., and Badura, T. (2004). Combined SST and SGG GOCE Gravity Field. Proc. GGSM 2004, Porto.Google Scholar
  15. Preimesberger, T., and Pail, R. (2003). GOCE quick-look gravity solution: application of the semianalytic approach in the case of data gaps and non-repeat orbits. Studia geoph. et geod., 47, pp. 435–453.CrossRefGoogle Scholar
  16. Rapp, R., Wang, Y., and Pavlis, N. (1991). The Ohio state 1991 geopotential and sea surface topography harmonic coefficient models. OSU Report, 410, Department of Geodetic Science and Surveying, The Ohio State University, Columbus.Google Scholar
  17. Rummel, R., van Gelderen, M., Koop, R., Schrama, E., Sansó, E, Brovelli, M., Miggliaccio, F, and Sacerdote, F. (1993). Spherical harmonic analysis of satellite gradiometry. Neth. Geod. Comm., Publications on Geodesy, 39, Delft, The Netherlands.Google Scholar
  18. Rummel R, Gruber T, Koop R (2004) High Level Processing Facility for GOCE: Products and Processing Strategy. Proc. of the 2nd Internat. GOCE User Workshop, Frascati, March 2004Google Scholar
  19. Schuh, W.-D. (1996). Tailored Numerical Solution Strategies for the Global Determination of the Earth’s Gravity Field, Mitteilungen geod. Inst. TU Graz, 81, Graz Univ. of Technology, Graz.Google Scholar
  20. Schuh, W.-D. (2002). Improved modelling of SGG-data sets by advanced filter strategies. ESA-Project “From Eötvös to mGal+” Final Report, ESA/ESTEC Contract 14287/00/NL/DC, WP 2, pp. 113–181, ESA, Noordwijk.Google Scholar
  21. Sneeuw, N. (2002). A semi-analytical approach to gravity field analysis from satellite observations. Dissertation, DGK, Reihe C, Munich, 527, Bayerische Akademie d. Wissenschaften, Munich.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • R. Pail
    • 1
  • W.-D. Schuh
    • 2
  • M. Wermuth
    • 3
  1. 1.Institute of Navigation and Satellite GeodesyGraz University of TechnologyGrazAustria
  2. 2.Institute of Theoretical GeodesyUniversity of BonnBonnGermany
  3. 3.Institute of Astronomical and Physical GeodesyTechnical University MunichMunichGermany

Personalised recommendations