Skip to main content

A New Gravimetric Geoidal Height Model over Norway Computed by the Least-Squares Modification Parameters

  • Conference paper
Gravity, Geoid and Space Missions

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 129))

Abstract

Over the last decade, there has been an increased interest in the determination of the geoid. This is mainly due to the demands for height transformation from users of GPS. Costly conventional levelling operations can be replaced with quicker and cheaper GPS-levelling surveys, as long as the geoidal height is computed to a high accuracy. Therefore, there is a common goal among geodesists to determine “the 1-cm geoid model”. This study uses a least-squares procedure to compute the modification parameters for the geoidal height determination over Norway. For the computation of the long-wavelength contribution, the new Global Geopotential Models (GGM) GGM01s from GRACE twin-satellites is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Denker H, Behrend D, Torge W (1997) The European gravimetric quasi-geoid EGG96. In: Gravity, Geoid and Marine Geodesy. Springer, Berlin, pp. 532–540.

    Google Scholar 

  • Forsberg R, Kaminskis J, Solheim D (1996) Geoid for the Nordic and Baltic Region from Gravimetry and Satellite Altimetry. Proceeding of International Symposium on Gravity, Geoid and Marine geodesy (GRAGEOMAR), Tokyo, IAG Symp Vol. 117, pp 540–547. Berlin: Springer-verlag.

    Google Scholar 

  • GETECH (1995) Global DTM5. Geophysical Exploration Technology (GETECH), University of Leeds, Leeds.

    Google Scholar 

  • Hagiwara Y (1976) A new formula for evaluating the truncation error coefficients. Bull Geod, 50:131–135.

    Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical Geodesy. W H Freeman and Company, San Francisco.

    Google Scholar 

  • Milbert DG (1995) Improvement of a high resolution geoid model in the United States by GPS height on NAVD88 benchmarks. IGeS Bulletin 4:13–36.

    Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. Herbert Wichman Verlag, Karlsruhe

    Google Scholar 

  • Nahavandchi H (2004) The quest for a precise geoidal height model. Kart og Plan 1: 46–56.

    Google Scholar 

  • Nahavandchi H, Sjöberg LE (1998) Terrain correction to power H3 in gravimetric geoid determination. Journal of Geodesy 72: 124–135.

    Article  Google Scholar 

  • Paul NK (1973) A method of evaluating the truncation error coefficients for geoidal height. Bulletin Geodesique 110:413–425.

    Article  Google Scholar 

  • Sideris MG, She BB (1995) A new high resolution geoid for Canada and part of the US by the 1D-FFT method. Bulletin Geodesique 69:107–118.

    Article  Google Scholar 

  • Sjöberg LE (1984) Least squares modification of Stokes’s and Vening Meinesz’ formulas by accounting for errors of truncation, potential coefficients and gravity data, Department of Geodesy, University of Uppsala, No. 27, Uppsals, Sweden.

    Google Scholar 

  • Sjöberg LE (1986) Comparison of some methods of modifying Stokes’s formula. Bollettino di Geodesia e Scienze Affini 3: 229–248.

    Google Scholar 

  • Sjöberg LE, Nahavandchi H (2000) The atmospheric geoid effects in Stokes formula. Geophysical Journal International 140: 95–100.

    Article  Google Scholar 

  • Stokes GG (1849) On the variation of gravity on the surface of the Earth. Trans Camb Phil Soc 8: 672–695.

    Google Scholar 

  • Vanicek P, Kleusberg A, Martinec Z, Sun W, Ong P, Najafi M, Vajda P Harrie L, Tomasec P, Ter Horst B (1996a) Compilation of a precise regional geoid. Department of Geodesy and Geomatics Engineering, Technical Report 184, University of New Brunswick, Fredericton.

    Google Scholar 

  • Wichiencharoen C (1982) The indirect effects on the computation of geoid undulations. Rep 336, Department of Geodetic Science, The Ohio State University, Columbus.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nahavandchi, H., Soltanpour, A., Nymes, E. (2005). A New Gravimetric Geoidal Height Model over Norway Computed by the Least-Squares Modification Parameters. In: Jekeli, C., Bastos, L., Fernandes, J. (eds) Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26932-0_33

Download citation

Publish with us

Policies and ethics