Advertisement

A New Gravimetric Geoidal Height Model over Norway Computed by the Least-Squares Modification Parameters

  • H. Nahavandchi
  • A. Soltanpour
  • E. Nymes
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 129)

Abstract

Over the last decade, there has been an increased interest in the determination of the geoid. This is mainly due to the demands for height transformation from users of GPS. Costly conventional levelling operations can be replaced with quicker and cheaper GPS-levelling surveys, as long as the geoidal height is computed to a high accuracy. Therefore, there is a common goal among geodesists to determine “the 1-cm geoid model”. This study uses a least-squares procedure to compute the modification parameters for the geoidal height determination over Norway. For the computation of the long-wavelength contribution, the new Global Geopotential Models (GGM) GGM01s from GRACE twin-satellites is used.

Keywords

Stokes’ formula geoid global gravity model modification topography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Denker H, Behrend D, Torge W (1997) The European gravimetric quasi-geoid EGG96. In: Gravity, Geoid and Marine Geodesy. Springer, Berlin, pp. 532–540.Google Scholar
  2. Forsberg R, Kaminskis J, Solheim D (1996) Geoid for the Nordic and Baltic Region from Gravimetry and Satellite Altimetry. Proceeding of International Symposium on Gravity, Geoid and Marine geodesy (GRAGEOMAR), Tokyo, IAG Symp Vol. 117, pp 540–547. Berlin: Springer-verlag.Google Scholar
  3. GETECH (1995) Global DTM5. Geophysical Exploration Technology (GETECH), University of Leeds, Leeds.Google Scholar
  4. Hagiwara Y (1976) A new formula for evaluating the truncation error coefficients. Bull Geod, 50:131–135.Google Scholar
  5. Heiskanen WA, Moritz H (1967) Physical Geodesy. W H Freeman and Company, San Francisco.Google Scholar
  6. Milbert DG (1995) Improvement of a high resolution geoid model in the United States by GPS height on NAVD88 benchmarks. IGeS Bulletin 4:13–36.Google Scholar
  7. Moritz H (1980) Advanced physical geodesy. Herbert Wichman Verlag, KarlsruheGoogle Scholar
  8. Nahavandchi H (2004) The quest for a precise geoidal height model. Kart og Plan 1: 46–56.Google Scholar
  9. Nahavandchi H, Sjöberg LE (1998) Terrain correction to power H3 in gravimetric geoid determination. Journal of Geodesy 72: 124–135.CrossRefGoogle Scholar
  10. Paul NK (1973) A method of evaluating the truncation error coefficients for geoidal height. Bulletin Geodesique 110:413–425.CrossRefGoogle Scholar
  11. Sideris MG, She BB (1995) A new high resolution geoid for Canada and part of the US by the 1D-FFT method. Bulletin Geodesique 69:107–118.CrossRefGoogle Scholar
  12. Sjöberg LE (1984) Least squares modification of Stokes’s and Vening Meinesz’ formulas by accounting for errors of truncation, potential coefficients and gravity data, Department of Geodesy, University of Uppsala, No. 27, Uppsals, Sweden.Google Scholar
  13. Sjöberg LE (1986) Comparison of some methods of modifying Stokes’s formula. Bollettino di Geodesia e Scienze Affini 3: 229–248.Google Scholar
  14. Sjöberg LE, Nahavandchi H (2000) The atmospheric geoid effects in Stokes formula. Geophysical Journal International 140: 95–100.CrossRefGoogle Scholar
  15. Stokes GG (1849) On the variation of gravity on the surface of the Earth. Trans Camb Phil Soc 8: 672–695.Google Scholar
  16. Vanicek P, Kleusberg A, Martinec Z, Sun W, Ong P, Najafi M, Vajda P Harrie L, Tomasec P, Ter Horst B (1996a) Compilation of a precise regional geoid. Department of Geodesy and Geomatics Engineering, Technical Report 184, University of New Brunswick, Fredericton.Google Scholar
  17. Wichiencharoen C (1982) The indirect effects on the computation of geoid undulations. Rep 336, Department of Geodetic Science, The Ohio State University, Columbus.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • H. Nahavandchi
    • 1
  • A. Soltanpour
    • 1
  • E. Nymes
    • 1
  1. 1.Division of GeomaticsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations