Advertisement

Local Geoid Computation by the Spectral Combination Method

  • O. Gitlein
  • H. Denker
  • J. Müller
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 129)

Abstract

The spectral combination method is investigated for the determination of a local geoid in Lower Saxony (Germany) using a global geopotential model, radial gravity gradients from the upcoming GOCE satellite mission, and gravity anomalies. The main goal of this study is to test the method with regard to the validation of GOCE data products. In order to prove the effectiveness and numerical accuracy of the method, the computations are done in a closed-loop simulation based on the EGM96 geopotential model. The gravity field signal is decomposed into long, medium and short wavelength components using corresponding spectral weight functions. The long wavelength information up to about degree n = 30 is computed from a global geopotential model, the medium wavelength part (n = 30−130) is taken from radial gravity gradients at GOCE altitude (250 km), and the high frequency part (n=130−360) is derived from terrestrial gravity anomalies. The modified spherical Butterworth filter and a cosine filter are tested as spectral weighting functions. The results from the closed-loop simulation are discussed, and an error analysis is done considering the commission and omission errors of the input data sets.

Keywords

Spectral combination method radial gravity gradients downward continuation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arabelos, D. and Tscherning, C. C. (1998). Calibration of satellite gradiometer data aided by ground gravity data. Journal of Geodesy, 72:617–625.CrossRefGoogle Scholar
  2. Denker, H. (2002). Computation of Gravity Gradients Over Europe for Calibration/Validation of GOCE Data. Proceed. of GG2002 Meeting in Thessaloniki, 287–292.Google Scholar
  3. ESA (1999). Gravity Field and Steady-State Ocean Circulation-The Four Candidate Earth Explorer Core Missions, SP-1233(1).Google Scholar
  4. Haagmans, R. (2001). GOCE The First Core Mission of the Earth Observation Envelope Programme and a Concept for Applications at Regional Scale. ESA, recitation held in ECGS Luxembourg, JGL 89th, Nov. 2001.Google Scholar
  5. Haagmans, R., Prijatna, K., and Dahl-Omang, O. (2002). An Alternative Concept for Validation of GOCE Gradiometry Results Based on Regional Gravity. Proceed, of GG2002 Meeting in Thessaloniki, 281–286.Google Scholar
  6. Heck, B. (1979). Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Sckweregradienten. DGK, Reihe C, Heft 259, München.Google Scholar
  7. Tscherning, C. C. and Rapp, R. H. (1974). Closed covariance expressions for gravity anomalies, geoid undulations, and deflections of the vertical implied by anomaly degree variance models. OSU Rep. 208, Columbus.Google Scholar
  8. Wenzel, H. G. (1981). Zur Geoidbestimmung durch Kombination von Schwereanomalien und einem Kugelfunktionsmodell mit Hilfe von Integralformeln. Zeitschr. f. Verm.wesen, 106:102–111.Google Scholar
  9. Wenzel, H. G. (1982). Geoid Computation by Least Squares Spectral Combination using Integral Kernels. Proceed. of the General Meeting of the IAG, Tokyo, 438–453.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • O. Gitlein
    • 1
  • H. Denker
    • 1
  • J. Müller
    • 1
  1. 1.Institut fur ErdmessungUniversity of HannoverHannoverGermany

Personalised recommendations