Merging a Gravimetric Model of the Geoid with GPS/Levelling data : an Example in Belgium

  • H. Duquenne
  • M. Everaerts
  • P. Lambot
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 129)


A new model of the gravimetric quasi-geoid covering Belgium was computed in 2003. In order to adapt it to the needs of levelling by GPS, it was necessary to fit it to a set of levelled GPS points embodying the Belgian geodetic and levelling reference systems. A dense network was available, allowing significant methodological and statistical studies on how to model differences between the gravimetric geoid and the levelled GPS points. A method using kriging with the outlier detection in GPS-levelling data was applied. Several models of trend and covariance functions were tested. A reference surface dedicated to levelling by GPS in Belgium is presented, the accuracy of which is about 2–2.5 cm.


Geoid levelling by GPS kriging Belgium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barzaghi R., A. Borghi, B. Ducarme and M. Everaerts (2004). Quasi-geoid BG03 computation in Belgium. In: Newton’s Bulletin Nr 1, BGI & IGeS.Google Scholar
  2. Chilès J.P. and P. Delfiner (1999). Geostatistics. Wiley & Sons, New York, USA.Google Scholar
  3. Duquenne H. (1999). Comparison and Combination of a Gravimetric Quasigeoid with a Levelled GPS Data Set by Statistical Analysis. Phys. Chem. Earth (A) 24:1, 79–83.CrossRefGoogle Scholar
  4. Forsberg R., G. Strykowski, J.C. Iliffe, M. Ziebart, P.A. Cross, C.C. Tscherning, P. Cruddace, K. Stewart, C. Bray, O. Finch (2002). OSGM02: a new geoid model of the British Isles. In: Gravity and Geoid 2002, 3rd Meeting of the IGGC, Ziti Edition, Thessaloniki, Greece.Google Scholar
  5. Kotsakis J. and M.G. Sideris (1999). On the adjustment of combined GPS/levelling/geoid networks. J Geod 73: 412–421.CrossRefGoogle Scholar
  6. Marti U., A. Schlatter, E. Brockmann and A. Wiget (2001). The Way to a Consistent National Height System for Swizerland. In: IAG Symposia 125: Vistas for Geodesy in the New Millennium, Springer 2002.Google Scholar
  7. Moritz H. (1989). Advanced Physical Geodesy. Wichmann, Karlsruhe, Germany.Google Scholar
  8. Pâquet P., Z. Jiang and M. Everaerts (1996). A new Belgian geoid determination BG96. In: IAG Symposia 117: Gravity, Geoid and Marine Geodesy, Springer 1997.Google Scholar
  9. Smith D.A. and D.G. Milbert (1999). The GEOID96 high-resolution geoid height model for the United States. J Geod 73: 219–236.CrossRefGoogle Scholar
  10. Wenzel, G. (1998). Ultra high degree geopotential model GPM3E97A to degree 1800 tailored to Europe. In: M. Vermeer and J. Adam (Editors): Proceedings Second Continental Workshop on the Geoid in Europe. Reports of the Finnish Geodetic Institute 98:4, pp. 71–80, Marsala, Finland.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • H. Duquenne
    • 1
  • M. Everaerts
    • 2
  • P. Lambot
    • 3
  1. 1.Laboratoire de Recherche en GéodésieIGN/ENSGMarne-la-ValléeFrance
  2. 2.Royal Observatory of BelgiumBrusselsBelgium
  3. 3.National Geographic InstituteBrusselsBelgium

Personalised recommendations