Network Approach versus State-space Approach for Strapdown Inertial Kinematic Gravimetry

  • Assumpció Térmens
  • Ismael Colomina
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 129)


The extraction of gravity anomalies from airborne strapdown INS gravimetry has been mainly based on state-space approach (SSA), which has many advantages but displays a serious disadvantage, namely, its very limited capacity to handle space correlations (like the rigorous treatment of cross-over points). This paper examines an alternative through the well known geodetic approach, where the INS differential mechanization equations are interpreted as a least-squares network parameter estimation problem. The authors believe that the above approach has some potential advantages that are worth exploring. Mainly, that modelling of the Earth gravity field can be more rigorous than with SSA and that external observation equations can be better exploited.


INS/GPS airborne gravimetry kinematic gravimetry geoid determination INS calibration network approach (NA) state-space approach (SSA) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Colomina, I., Navarro, J., Térmens, A., 1992. Geo-TeX: a general point determination system. International Archives of Photogrammetry and Remote Sensing, Vol. 29-B3, International Society of Photogrammetry and Remote Sensing, pp. 656–664.Google Scholar
  2. Colomina, I., Blázquez, M., 2004. A unified approach to static and dynamic modelling in photogrammetry and remote sensing. ISPRS International Archives at Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 35-Bl, Comm. I, pp. 178–183.Google Scholar
  3. Forsberg, R., 1986. Inertial Geodesy in Rough Gravity Field. UCSE Report N.30009, University of Calgary, 1986, 71 pages.Google Scholar
  4. Hammada, Y., Schwarz, K.P., 1997. Airborne Gravimetry: Model-based versus Frequency-domain Filtering Approaches. Proc. of the Int. Symp. on Kinematic Systems in Geodesy, Geomatics and Navigation, Banff, Canada, June 3–6, 1997. pp. 581–595.Google Scholar
  5. Jekeli, C., 2001. Inertial Navigation Systems with Geodetic Applications. de Gruyter.Google Scholar
  6. Kloeden, P.E., Platen, E., 1999. Numerical solution of Stochastic Differential Equations, Springer Verlag, New York, US.Google Scholar
  7. Nassar, S., Schwarz, K.P., Noureldin, A., El-Sheimy, N., 2003. Modeling Inertial Sensor Errors using Autoregressive (AR) Models. Proc. ION NTM-2003. Annaheim, USA, January 22–24, 2003. pp. 116–125.Google Scholar
  8. Schwarz, K.P., 1985. A Unified Approach to Post-mission Processing of Inertial Data. Bulletin Géodésique Vol. 59, N. 1, pp. 33–54.Google Scholar
  9. Schwarz, K.P., Li, Y.C., 1995. What can airborne gravimetry contribute to geoid determination? IAG Symposium 64 “Airborne Gravimetry,” IUGG XXI General Assembly, Boulder, CO, US pp. 143–152.Google Scholar
  10. Schwarz, K.P., Wei, M., 1995. Inertial Geodesy and INS/GPS Integration (partial lecture notes for ENGO 623). Department of Geomatics Engineering. University of Calgary.Google Scholar
  11. Térmens, A., Colomina, I., 2003. Sobre la correctión de errores sistemáticos en gravimetría aerotransportada. Proceedings of the 5. Geomatic Week, Barcelona, ES.Google Scholar
  12. Tomé, P., 2002. Integration of Inertial and Satellite Navigation Systems for Aircraft Attitude Determination. Ph.D. Thesis. Department Applied Mathematics. Faculty of Sciences. University of Oporto.Google Scholar
  13. Wei, M., Schwarz, K.P., 1990. A strapdown inertial algorithm using an Earth-fixed cartesian frame. Navigation, Vol. 37, No. 2, pp. 153–167.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Assumpció Térmens
    • 1
  • Ismael Colomina
    • 2
  1. 1.Institut Cartogràfic de CatalunyaBarcelonaSpain
  2. 2.Institute of GeomaticsCastelldefelsSpain

Personalised recommendations