Skip to main content

Pulmonary Artery Occlusion Pressure: Measurement, Significance, and Clinical Uses

  • Conference paper
Book cover Functional Hemodynamic Monitoring

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICMSOFT,volume 42))

  • 1964 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O’Quin R, Marini JJ (1983) Pulmonary artery occlusionpressure: Clinical physiology, measurement and interpretation. Am Rev Respir Dis 128:319–326

    PubMed  Google Scholar 

  2. Gardner RM (1981) Direct blood pressure measurement-dynamic response requirements. Anesthesiology 54:227–236

    PubMed  Google Scholar 

  3. Gardner RM (1996) Accuracy and reliability of disposable pressure transducers coupled with modern pressure monitors. Crit Care Med 24:879–882

    Article  PubMed  Google Scholar 

  4. Sharkey SW (1987) Beyond the wedge: clinical physiology and the Swan-Ganz catheter. Am J Med 83:111–122

    Article  PubMed  Google Scholar 

  5. Shuster DP, Seeman MD (1983) Temporary muscle paralysis for accurate measurement of pulmonary artery occlusion pressure. Chest 84:593–597

    PubMed  Google Scholar 

  6. Thyrault M, Teboul JL, Richard C, Coirault C, Lecarpentier Y, Chemla D (1998) Relation between dicrotic notch and mean pulmonary artery pressure studied by using a Swan-Ganz catheter in critically ill patients. Intensive Care Med 24:77–80

    Article  PubMed  Google Scholar 

  7. Cozzi PJ, Hall JB, Schmidt GA (1995) Pulmonary diastolic-occlusion pressure gradient increased in acute pulmonary embolism. Crit Care Med 23:1481–1484

    Article  PubMed  Google Scholar 

  8. Enson Y, Schmidt DH, Ferrer MI, et al (1974) The effect of acutely induced hypervolemia on resistance to pulmonary blood flow and pulmonary arterial compliance in patients with chronic obstructive lung disease. Am J Med 57:395–401

    Article  PubMed  Google Scholar 

  9. Zapol WM, Snider MT, Rie MA, et al (1985) Pulmonary circulation during adult respiratory distress syndrome. In: Zapol WM, Falke KJ (eds) Acute Respiratory Failure. Marcel Dekker, New York, pp 241

    Google Scholar 

  10. Naeije R (2003) Pulmonary vascularresistance. A meaninglessvariable? Intensive CareMed 29:526–529

    Google Scholar 

  11. Teboul JL, Andrivet P, Ansquer M, et al (1992) Bedside evaluation of the resistance of large and medium pulmonary veins in various lung diseases. J Appl Physiol 72:998–1003

    PubMed  Google Scholar 

  12. Wilson RF, Beckman SB, Tyburski JG, et al (1988) Pulmonary artery diastolic and wedge pressure relationships in critically ill and injured patients. Arch Surg 123:933–936

    PubMed  Google Scholar 

  13. Leatherman JW, Shapiro RS (2003) Overestimation of pulmonary artery occlusion pressure in pulmonary hypertension due to partial occlusion. Crit Care Med 31:93–97

    Article  PubMed  Google Scholar 

  14. Morris AH, Chapman RH (1985) Wedge pressure confirmation by aspiration of pulmonar capillary blood. Crit Care Med 13:756–759

    PubMed  Google Scholar 

  15. Suter PM, Lindauer JM, Fairley HB, Schlobolym RM (1975) Errors in data derived from pulmonary artery blood gas values. Crit Care Med 3:175–181

    PubMed  Google Scholar 

  16. Gnaegi A, Feihl F, Perret C (1997) Intensive care physicians’ insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 25:213–220

    Article  PubMed  Google Scholar 

  17. Komadina KH, Schenk DA, LaVeau P, et al (1991) Interobse rver variability in the interpretation of pulmonary artery catheter pressure tracings. Chest 100:1647–1654

    PubMed  Google Scholar 

  18. Al-Kharrat T. Zarich S. Amoateng-Adjepong Y. Manthous CA (1999) Analysis of observer variability in measurement of pulmonary artery occlusion pressures. Am J Respir Crit Care Med 160:415–420

    PubMed  Google Scholar 

  19. Zarich S, Pust-Marcone J, Amoateng-Adjepong Y, et al (2000)Failure of a brief educational program to improve interpretation of pulmonary artery occlusion pressure tracings. Intensive Care Med 26:698–703

    Article  PubMed  Google Scholar 

  20. Bernard GR, Sopko G, Cerra F, et al (2000) Pulmonary artery catheterization and clinical outcomes: National Heart, Lung, and Blood Institute and Food and Drug Administration workshop report. Consensus statement. JAMA 283:2568–2572

    Article  PubMed  Google Scholar 

  21. Silverman HJ, Eppler JH, Pitman AP, Patz D (1987) Pulmonary artery wedge pressure measurements in patients on assisted ventilation. J Crit Care 2:115–120

    Article  Google Scholar 

  22. Hassan FM, Weiss WB, Braman SS, Hoppin FG (1985) Influe nce of lung injury on pulmonary wedge-left atrial pressure correlation during positive end-expiratory pressure ventilation. Am Rev Respir Dis 131:246–250

    PubMed  Google Scholar 

  23. Teboul JL, Zapol WH, Brun-Buisson C, et al (1989) A comparison of pulmonary artery occlusion pressure and left ventricular end-diastolic pressure during mechanical ventilation with PEEP in the patients with severe ARDS. Anesthesiology 70:266–270

    Google Scholar 

  24. Teboul JL, Besbes M, Andrivet P, et al (1992) A bedside index assessing the reliability of pulmonary artery occlusion pressure measurements during mechanical ventilation with positive end-expiratory pressure. J Crit Care Med 7:22–29

    Article  Google Scholar 

  25. Albert RK. Lamm WJ (2003) Left atrial pressure can be accurately transmitted to the pulmonary artery despite zone 1 conditions. Am J Respir Crit Care Med 167:1016–1020

    Article  PubMed  Google Scholar 

  26. Shasby DM, Dauber JM, Pfister S, et al (1981) Swan-Ganz location and left atrial pressure determine the accuracy of the wedge pressure when positive pressure, end-expiratory pressure is used. Chest 80:666–670

    PubMed  Google Scholar 

  27. Culver BH (1988) Hemodynamic monitoring: physiologic problems in interpretation. Clin Crit Care Med 14:165–177

    Google Scholar 

  28. Cassidy SS, Schweip F (1989) Cardiovascular effects of positive end-expiratory pressure. In Scharf SM, Cassidy SS (eds) Heart-Lung Interaction in Health and Disease. Marcel Dekker, New York, p 463

    Google Scholar 

  29. Jardin F, Genevisy B, Brun-Ney D, Bourdarais JP (1985) Influe nce of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest 88:653–658

    PubMed  Google Scholar 

  30. Cassidy SS, Robertson CH, Pierce AK, et al (1978)Cardiovascular effects of positive end-expiratory pressure in dogs. J Appl Physiol 44:743–750

    PubMed  Google Scholar 

  31. Pharnant JF, Devaux JY, Monsallier JF, et al (1986) Mechanisms of decreased left ventricular preload during continuous positive pressure ventilation in ARDS. Chest 90:74–80

    PubMed  Google Scholar 

  32. Pinsky M, Vincent J-L, DeSmet J-M (1991) Estimating left-ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis 143:25–31

    PubMed  Google Scholar 

  33. Teboul JL, Pinsky MR, Mercat A, et al (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28:3631–3636

    Article  PubMed  Google Scholar 

  34. Pepe PE, Marini JJ (1982) Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction. Am Rev Respir Dis 126:166–170

    PubMed  Google Scholar 

  35. Rice DL, Chon KE, Gaasch WN, et al (1974) Wedge pressure measurements in obstructive pulmonary disease. Chest 66:628–632

    PubMed  Google Scholar 

  36. Ninane V, Vernault J-C, deTroyer A (1993) Intrinsi c PEEP in patients with chronic obstructive pulmonary disease. Role of expiratory muscles. Am Rev Respir Dis 148:1037–1042

    PubMed  Google Scholar 

  37. Hoyt JD, Leatherman JW (1997) Interpretatio n of the pulmonary artery occlusion pressure in mechanically ventilated patients. Intensive Care Med 23:1125–1131

    Article  PubMed  Google Scholar 

  38. Pichard AD, Kay R, Smith H, et al (1982) Large V waves in the pulmonary wedge pressure tracing in the absence of mitral regurgitation. Am J Cardiol 50:1044–1050

    Article  PubMed  Google Scholar 

  39. Fuchs RM, Heuser RR, Yin FC, Brinker JA (1982) Limitations of pulmonary wedge V waves in diagnosing mitral regurgitation. Am J Cardiol 49:849–854

    Article  PubMed  Google Scholar 

  40. Sharkey SW(1997) A Guide to the Interpretation of Hemodynamic Data in the Coronary Care Unit. Lippincott-Raven, Philadelphia

    Google Scholar 

  41. Ferguson ND, Meade MO, Hallett DC, Stewart TE (2002) High values of the pulmonary artery wedge pressure in patients with acute lung injury and acute respiratory distress syndrome. Intensive Care Med 28:1073–1077

    Article  PubMed  Google Scholar 

  42. Gaar KA, Taylor AI, Owens LJ, Guyfon AC (1967) Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am J Physiol 213:910–914

    PubMed  Google Scholar 

  43. Palevsky HI, Pietra GG, Fishman AP (1990) Pulmonary veno-occlusive disease and its response to vasodilator agents. Am Rev Respir Dis 142:426–429

    PubMed  Google Scholar 

  44. Cope DK, Grimbert F, Downey JM, Taylor AE (1992) Pulmonary capillary pressure: A review. Crit Care Med 20:1043–1056

    PubMed  Google Scholar 

  45. Collee GG, Lynch KE, Hill RD, Zapol WM (1987) Bedside measurement of pulmonary capillary pressure in patients with acute respiratory failure. Anesthesiology 66:614–620

    PubMed  Google Scholar 

  46. Takala J (2003) Pulmonary capillary pressure. Intensive CareMed 29:890–893

    Google Scholar 

  47. Oppenheimer L, Goldberg HS (1987) Pulmonary circulation and edema formation. In: Scharf SM, Cassidy JS (eds) Heart-Lung Intersection in Health and Disease. Marcel Dekker, New York, p 93

    Google Scholar 

  48. Braunwald E, Ross J Jr (1979) Control of cardiac performance. In: Berne RM, Sperelakis N, Geiger SR (eds) Handbook of Physiology, section 2: The Cardiovascular System, vol. 1: The Heart. American Physiological Society, Bethesda, p 533

    Google Scholar 

  49. Boldt J, Lenz M, Kumle B, et al (1998) Volume replacement strategies on ICUs: results from a postal survey. Intensive Care Med 24:147–151

    Article  Google Scholar 

  50. Swan HJ, Ganz W, Forrester J, et al (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451

    PubMed  Google Scholar 

  51. Sibbald WJ, Driedger AA, Myers ML, et al (1983) Biventricular function in the adult respiratory distress syndrome: Hemodynamic and radionuclide assessment, with special emphasis on right ventricular function. Chest 84:126–134

    PubMed  Google Scholar 

  52. Parker J, Case R (1979) Normal left ventricular function. Circulation 60:4–12

    PubMed  Google Scholar 

  53. Packman MI, Rackow EC (1983) Optimum left heart filling pressure during fluid resuscitation of patients with hypovolemic and septic shock. Crit Care Med 11:165–169

    PubMed  Google Scholar 

  54. Crexells C, Chatterjee R, Forrester J, et al (1973) Optimal level of filling pressure in the left side of the heart in acute myocardial infarction. N Engl J Med 289:1263–1266

    PubMed  Google Scholar 

  55. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICUpatients: a critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  56. Tavernier B, Makhotine O, Lebuffe G, et al (1998) Systol ic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89:1313–1321

    Article  PubMed  Google Scholar 

  57. Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    PubMed  Google Scholar 

  58. Wagner JC, Leatherman JW (1998) Right ventricular end-diastolic volume as a predictor of the hemodynamic response to a fluid challenge. Chest 113:1048–1054

    PubMed  Google Scholar 

  59. Tousignant CP, Walsh F, Mazer CD (2000) The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesth Analg 90:351–355

    Article  PubMed  Google Scholar 

  60. Forrester JS, Diamond G, McHugh TJ, Swan HJC (1971) Filling pressures in the right and left sides of the heart in acute myocardial infarction. N Engl J Med 285:190–193

    PubMed  Google Scholar 

  61. Magder S (1998) More respect for the CVP. Intensive Care Med 24:651–653

    Article  PubMed  Google Scholar 

  62. Reuse C, Vincent JL, Pinsky MR (1990) Measurements of right ventricular volumes during fluid challenge. Chest 98:1450–1454

    PubMed  Google Scholar 

  63. Diebel LN, Wilson RF, Tagett MG, et al (1992) End-d iastolic volume: a better indicator of preload in the critically ill. Arch Surg 127:817–822

    PubMed  Google Scholar 

  64. Schneider AJ, Teule GJJ, Groeneveld ABJ, et al (1988)Biventri cular performance during volume loading in patients with early septic shock, with emphasis on the right ventricle: a combined hemodynamic and radionuclide study. Am Heart J 116:103–112

    Article  PubMed  Google Scholar 

  65. Magder S, Georgiadis G, Cheone T (1992) Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care 7:76–85

    Article  Google Scholar 

  66. Magder S, Lagonidis D (1999) Effectiveness of albumin vs normal saline as a test of volume responsiveness in post-cardiac surgery patients. J Crit Care 14:164–171

    Article  PubMed  Google Scholar 

  67. Dorin RI, Kearns PJ (1988) High output circulatory failure in acute adrenal insufficiency. Crit Care Med 16:296–297

    PubMed  Google Scholar 

  68. Leatherman JW, Schmitz PG (1991) Fever, hyperdynamic shock, and multiple-system organ failure: A pseudo-sepsis syndrome associated with chronic salicylate intoxication. Chest 100:1391–1396

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marini, J.J., Leatherman, J.W. (2005). Pulmonary Artery Occlusion Pressure: Measurement, Significance, and Clinical Uses. In: Pinsky, M.R., Payen, D. (eds) Functional Hemodynamic Monitoring. Update in Intensive Care and Emergency Medicine, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26900-2_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-26900-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22349-8

  • Online ISBN: 978-3-540-26900-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics