Skip to main content

Visualization and Fractal Analysis of Biological Sequences

  • Chapter
Bioinformatics Technologies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfinsen, C. (1973) Principles that govern the folding of protein chains. Science 181: 223–230.

    Google Scholar 

  • Anh, V.V., Lau, K.S. and Yu, Z.G. (2001) Multifractal characterization of complete genomes. J. Phys. A: Math. Gene. 34: 7127–7139.

    MathSciNet  Google Scholar 

  • Anh, V.V., Lau, K.S. and Yu, Z.G., (2002) Recognition of an organism from fragments of its complete genome, Phys. Rev. E 66: 031910.

    Google Scholar 

  • Balafas, J.S. and Dewey, T.G. (1995) Multifractal analysis of solvent accessibilities in proteins. Phys. Rev. E. 52: 880–887.

    Google Scholar 

  • Barnsley, M.F. and Demko, S. (1985) Iterated function systems and the global construction of Fractals. Proc. R. Soc. Lond. A 399: 243–275.

    MathSciNet  Google Scholar 

  • Basu, S., Pan, A., Dutta, C. and Das, J. (1998) Chaos game representation of proteins. J. Mol. Graphics and Modeling 15: 279–289.

    Google Scholar 

  • Berthelsen, C.L., Glazier, J.A. and Skolnick, M.H. (1992) Global fractal dimension of human DNA sequences treated as pseudorandom walks. Phys. Rev. A 45: 8902–8913.

    Google Scholar 

  • Brown, T.A. (1998) Genetics (3rd Edition). CHAPMAN & HALL, London

    Google Scholar 

  • Buldyrev, S.V., Dokholyan, N.V., Goldberger, A.L., Havlin, S., Peng, C.K., Stanley, H.E. and Visvanathan, G.M. (1998) Analysis of DNA sequences using method of statistical physics. Physica A 249: 430–438.

    Google Scholar 

  • Buldyrev, S.V., Goldgerger, A.I., Havlin, S., Peng, C.K. and Stanley, H.E. (1994) in: Fractals in Science, Edited by A. Bunde and S. Havlin, Springer-verlag Berlin Heidelberg, Page 49–87.

    Google Scholar 

  • Canessa, E. (2000) Multifractality in time series. J. Phys. A: Math. Gene. 33: 3637–3651.

    MATH  MathSciNet  Google Scholar 

  • Chothia, C. (1992) One thousand families for the molecular biologists. Nature (London) 357: 543–544.

    Article  Google Scholar 

  • Dewey, T.G. (1993) Protein structure and polymer collapse. J. Chem. Phys. 98: 2250–2257.

    Article  Google Scholar 

  • Dill, K.A. (1985) Theory for the folding and stability of globular proteins, Biochemistry 24: 1501–1509.

    Article  Google Scholar 

  • Falconer, K.J. (1990) Fractal geometry: Mathematical foundations and applications. John wiley & sons LTD.

    Google Scholar 

  • Feder, J. (1988) Fractals. Plenum Press, New York, London..

    Google Scholar 

  • Fedorov, B.A., Fedorov, B.B. and Schmidt, P.W. (1993) An analysis of the fractal properties of the surfaces of globular proteins, J. Chem. Phys. 99: 4076–4083.

    Article  Google Scholar 

  • Fiser, A., Tusnady, G.E., Simon, I. (1994) Chaos game representation of protein structures. J. Mol. Graphics 12: 302–304.

    Google Scholar 

  • Fraser, C.M. et al. (1995) The minimal gene complement of Mycoplasma genitalium. Science 270: 397–404.

    Google Scholar 

  • Grassberger, P. and Procaccia, I. (1983) Characterization of strange attractors. Phys. Rev. Lett. 50: 346–349.

    Article  MathSciNet  Google Scholar 

  • Halsy, T., Jensen, M., Kadanoff, L., Procaccia, I. and Schraiman, B. (1986) Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33: 1141–1151.

    Google Scholar 

  • Hao, B.L., Lee, H.C. and Zhang, S.Y. (2000) Fractals related to long DNA sequences and complete genomes. Chaos, Solitons and Fractals 11(6): 825–836.

    Article  Google Scholar 

  • Hao, B.L., Xie, H.M., Yu, Z.G. and Chen, G.Y. (2001) Factorizable language: from dynamics to bacterial complete genomes. Physica A 288: 10–20.

    MathSciNet  Google Scholar 

  • Jeffrey, H.J. (1990) Chaos game representation of gene structure. Nucleic Acids Research 18(8): 2163–2170.

    Google Scholar 

  • Larhammar, D. and Chatzidimitriou-Dreismann, C.A. (1993) Biological origins of long-range correlations and compositional variations in DNA. Nucl. Acids Res. 21: 5167–5170.

    Google Scholar 

  • Lewis, M., Rees, D.C. (1985) Fractal Surface of Proteins. Science 230: 1163–1165.

    Google Scholar 

  • Li, H., Helling, R., Tang, C. and Wingreen, N.S. (1996) Emergence of Preferred Structures in a Simple Model of Protein Folding, Science 273: 666–669.

    Google Scholar 

  • Li, W.H. and Graur, D. (1991) Fundamental of Molecular Evolution. Sinauer Associates, Inc. Sunderland, Massachusetts.

    Google Scholar 

  • Lidar, D.A., Thirumalai, D., Elber, R. and Gerber, R.B. (1999) Fractal analysis of protein potential energy landscapes. Phys. Rev. E 59: 2231–2243.

    Google Scholar 

  • Luo, L., Lee, W., Jia, L., Ji, F. and Lu, T. (1998) Statistical correlation of nucleotides in a DNA sequence. Phy. Rev. E 58(1): 861–871.

    Google Scholar 

  • Luo, L. and Tsai, L. (1988) Fractal analysis of DNA walk. Chin. Phys. Lett. 5: 421–424.

    Google Scholar 

  • Mandelbrot, B.B. (1982) The Fractal Geometry of Nature. W.H. Freeman, New York.

    Google Scholar 

  • Micheletti, C., Banavar, J.R., Maritan, A. and Seno, F. (1998) Steric Constraints in Model Proteins, Phys. Rev. Lett. 80: 5683–5686.

    Google Scholar 

  • Noonan, J. and Zeilberger, D. (1999) The Goulden-Jackson cluster method: extensions, applications and implementations, J. Difference Eq. Appl. 5, 355–377, http://www.math.rutgers.edu/~zeilberg/papers1.html.

    MathSciNet  Google Scholar 

  • Pande, V.S., Grosberg, A.Y. and Tanaka, T. (1994) Nonrandomness in Protein Sequences: Evidence for a Physically Driven Stage of Evolution? Proc. Natl. Acad. Sci. USA 91: 12972–12975

    Google Scholar 

  • Peng, C.K., Buldyrev, S., Goldberg, A.L., Havlin, S., Sciortino, F., Simons, M. and Stanley, H.E. (1992) Long-range correlations in nucleotide sequences. Nature 356: 168–170.

    Article  Google Scholar 

  • Pfiefer, P., Welz, U. and Wipperman, H. (1985) Fractal surface dimension of proteins: Lysozyme. Chem. Phys. Lett. 2113: 535–540

    Google Scholar 

  • Prabhu, V.V. and Claverie, J.M. (1992) Correlations in intronless DNA. Nature 359: 782–782.

    Article  Google Scholar 

  • Qi, J., Wang, B. and Hao, B.L. (2004) Prokaryote phylogeny based on complete genomes—tree construction without sequence alignment. J. Mol. Evol. 58: 1–11.

    Article  Google Scholar 

  • Russell, R.B. (2000) Classification of Protein Folds, in Protein structure prediction: Methods and Protocls, Eds, D. Webster, Humana Press Inc., Totowa, NJ.

    Google Scholar 

  • Shih, C.T., Su, Z.Y., Gwan, J.F., Hao, B.L., Hsieh, C.H. and Lee, H.C. (2000) Mean-Field HP Model, Designability and Alpha-Helices in Protein Structures, Phys. Rev. Lett. 84(2): 386–389.

    Article  Google Scholar 

  • Shih, C.T., Su, Z.Y., Gwan, J.F., Hao, B.L., Hsieh, C.H., Lee, H.C. (2002) Geometric and statistical properties of the mean-field HP model, the LS model and real protein sequences. Phys. Rev. E 65: 041923.

    Google Scholar 

  • Strait, B.J. and Dewey, T.G. (1995) Multifractals and decoded walks: Applications to protein sequence correlations, Phys. Rev. E. 52: 6588–6592.

    Google Scholar 

  • Tino, P. (2001) Multifractal properties of Hao’s geometric representation of DNA sequences, Physica A 304: 480–494.

    MathSciNet  Google Scholar 

  • Vrscay, E.R. (1991) Iterated function systems: theory, applications and the inverse problem, in Fractal Geometry and analysis, Eds, J. Belair, NATO ASI series, Kluwer Academic Publishers.

    Google Scholar 

  • Wang, B. and Yu, Z.G. (2000) One way to characterize the compact structures of lattice protein model. J. Chem. Phys. 112(13): 6084–6088

    Article  Google Scholar 

  • Wang, J. and Wang, W. (2000) Modeling study on the validity of a possibly simplified representation of proteins. Phys. Rev. E 61: 6981–6986.

    Google Scholar 

  • Xie, H.M. (1996) Grammatical Complexity and One-Dimensional Dynamical Systems. World Scientific, Singapore.

    Google Scholar 

  • Yu, Z.G., Anh, V.V. and Lau, K.S. (2001) Measure representation and multifractal analysis of complete genome. Phys. Rev. E 64: 031903.

    Google Scholar 

  • Yu, Z.G., Anh, V.V. and Lau, K.S. (2003) Multifractal and correlation analysis of protein sequences from complete genome. Phys. Rev. E 68: 021913.

    Google Scholar 

  • Yu, Z.G., Anh, V.V. and Lau, K.S. (2004) Fractal analysis of large proteins based on the Detailed HP model. Physica A (in press).

    Google Scholar 

  • Yu, Z.G., Hao, B.L., Xie, H.M. and Chen, G.Y. (2000) Dimension of fractals related to language defined by tagged strings in complete genome. Chaos, Solitons and Fractals 11(14): 2215–2222.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Hiedelberg

About this chapter

Cite this chapter

Yu, ZG., Anhl, V., Chen, YP.P. (2005). Visualization and Fractal Analysis of Biological Sequences. In: Chen, YP.P. (eds) Bioinformatics Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26888-X_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-26888-X_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20873-0

  • Online ISBN: 978-3-540-26888-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics