Skip to main content

Summary

The key assumptions of classical statistical mechanics, ergodicity and mixing, are facilitated by the instability of a phase-space trajectory with respect to small perturbations of the initial conditions. Such perturbations typically grow or shrink exponentially with time, which is described by a set of rate constants, the Lyapunov exponents. The set of all exponents is referred to as the Lyapunov spectrum. Here, we summarize current ideas and methods for the computation and interpretation of the Lyapunov spectra of simple fluids. Systems in equilibrium and in stationary nonequilibrium states are considered. Emphasis is given to hard-particle systems, for which the equilibrium phase-space perturbations associated with small Lyapunov exponents display periodic patterns in space reminiscent of the modes of fluctuating hydrodynamics, the so-called Lyapunov modes. Stationary nonequilibrium states are generated by forcing the system away from equilibrium and, simultaneously, by removing the irreversibly-produced excessive heat with a “thermostat”. Dynamical and stochastic thermostats are considered. The phase-space probability function of dynamically thermostated systems is a multifractal distribution with an information dimension smaller than the phase-space dimension. This is related to the irreversible transport in such systems, and to the Second Law of Thermodynamics. A possible extension of these ideas to stochastically-thermostated nonequilibrium flows is also attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Ruelle, “Irreversibility Revisited”, in Highlights of Mathematical Physics, edited by A. Fokas, J. Halliwell, T. Kibble, and B. Zegarlinski (American Mathematical Society, 2002), p.233.

    Google Scholar 

  2. H.A. Posch, W.G. Hoover, “Nonequilibrium molecular dynamics of classical fluids”, in Molecular Liquids: new perspectives in Physics and Chemistry, edited by José J.C. Teixeira-Dias, NATO-ASI Series C: Mathematical & Physical Sciences (Kluwer Academic Publishers, Dordrecht, 1992), p.527.

    Google Scholar 

  3. H.A. Posch, Ch. Dellago, W.G. Hoover, O. Kum, “Microscopic Time-Reversibility and Macroscopic Irreversibility-Still a Paradox?”, in Pioneering Ideas for the Physical and Chemical Sciences: Josef Loschmidt's Contributions and Modern Developments in Structural Organic Chemistry, Atomistics, and Statistical Mechanics W. Fleischhacker, T. Sch”onfeld, eds., p. 233–248, Plenum, New York, 1997.

    Google Scholar 

  4. W.G. Hoover, Time Reversibility, Computer Simulation, and Chaos, World Scientific, Singapore, 1999.

    Google Scholar 

  5. W.G. Hoover, Computational Statistical Mechanics, Elsevier, Amsterdam, 1991.

    Google Scholar 

  6. D.J. Evans, G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).

    Google Scholar 

  7. P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  8. J.R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge University Press, Cambridge 1999.

    Google Scholar 

  9. D. Ruelle, “Smooth Dynamics and New Theoretical Ideas in Nonequilibrium Statistical Mechanics”, J. Stat. Phys. 95, 393–468 (1999).

    Article  Google Scholar 

  10. D. Szasz, editor, Hard Ball Systems and the Lorenz Gas, Encyclopedia of the mathematical sciences 101, Springer Verlag, Berlin (2000).

    Google Scholar 

  11. V.I. Oseledec, ”A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Moscow Math. Soc. 19, 197 (1968).

    Google Scholar 

  12. J.-P. Eckmann, D. Ruelle, ”Ergodic theory of chaos and strange attractors”, Rev. of Modern Phys. 57, 617 (1985).

    Article  Google Scholar 

  13. E. Ott, Chaos in dynamical systems, Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  14. G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, “Théorie ergodic-Tous les nombres caractéristiques de Lyapunov sant effectivement caculables”, C. R. Acad. Sci., Ser. A 286, 431 (1978).

    Google Scholar 

  15. G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, “Lyapunov Characteristic Exponents for Smooth Dynamical, Systems and for Hamiltonian Systems, A Method for Computing all of them”, Meccanica 15, 9 (1980).

    Article  Google Scholar 

  16. I. Shimada, T. Nagashima, “A numerical approach to ergodic problem of dissipative dynamical systems”, Progr. Theor. Phys. 61, 1605 (1979).

    Google Scholar 

  17. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, “Determining Lyapunov exponents from a time series”, Physica 16 D, 285 (1985).

    Google Scholar 

  18. R. Illner, H. Neunzert, “The concept of irreversibility and statistical physics”, Transport Theory and Statistical Physics 16(1), 89 (1987).

    Google Scholar 

  19. J.A.G. Roberts, G.R.W. Quispel, “Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems”, Physics Reports 216, 63 (1992).

    Article  Google Scholar 

  20. V.I. Arnold, Mathematical methods of classical mechanics (Springer, Berlin, 1989).

    Google Scholar 

  21. D.J. Evans, E.G.D. Cohen, G.P. Morriss, “Viscosity of a fluid from its maximal Lyapunov exponents”, Phys. Rev. A 42, 5990 (1990).

    Article  PubMed  Google Scholar 

  22. C. Dellago, H.A. Posch, W.G. Hoover, “Lyapunov instability of hard disks in equilibrium and nonequilibrium steady states”, Phys. Rev. E 53, 1485 (1996).

    Article  Google Scholar 

  23. H.A. Posch, W.G. Hoover, “Lyapunov instability of dense Lennard-Jones fluids”, Phys. Rev. A 38, 473 (1988).

    Article  PubMed  Google Scholar 

  24. H.A. Posch, W.G. Hoover, “Large-system phase-space dimensionality loss in stationary heat flows”, Physica D 187, 281 (2004).

    Article  Google Scholar 

  25. J.D. Bernal, S.V. King, in Physics of Simple Liquids, H. N. V. Temperley, J.S. Rowlinson, G.S. Rushbrooke eds., page 231, (North-Holland, Amsterdam, 1968).

    Google Scholar 

  26. B.J. Alder, T.E. Wainwright, “Molecules in Motion”, Sci. Am. 201(4), 113 (1959).

    PubMed  Google Scholar 

  27. T. Einwohner, B.J. Alder, “Molecular Dynamics VI. Free-Path Distributions and Collision Rates for Hard-Sphere and Square-Well Molecules”, J. Chem. Phys. 49, 1458 (1968).

    Article  Google Scholar 

  28. J.-P. Hansen, I.R. McDonald, Theory of simple liquids, (Academic Press, London, 1991).

    Google Scholar 

  29. T.M. Reed, K.E. Gubbins, Applied Statistical Mechanics, (McGraw Hill, Tokyo, 1973).

    Google Scholar 

  30. C. Dellago, H.A. Posch, “Kolmogorov-Sinai entropy and Lyapunov spectra of a hard sphere gas”, Physica A, 240, 68 (1997).

    Article  Google Scholar 

  31. H.A. Posch, R. Hirschl, “Simulation of Billiards and of Hard-Body Fluids”, pages 269–310 in Hard Ball Systems and the Lorenz Gas, edited by D. Szasz, Encyclopedia of the mathematical sciences 101, Springer Verlag, Berlin (2000).

    Google Scholar 

  32. W.G. Hoover, H.A. Posch, C. Forster, C. Dellago, M. Zhou, “Lyapunov instability of two-dimensional many-body systems; soft disks, hard disks, and rotors”, J. Stat. Phys. 109, Nos. 3/4, 765 (2002).

    Article  Google Scholar 

  33. C. Forster, R. Hirschl, H.A. Posch, W.G. Hoover, “Perturbed phase-space dynamics of hard-disk fluids”, Physica D 187, 294 (2004).

    Article  Google Scholar 

  34. C. Forster, R. Hirschl, H.A. Posch, “Analysis of Lyapunov modes for hard-disk fluids”, Proceedings for the Math.-Physics conference, Lissabon, July 2003.

    Google Scholar 

  35. C. Dellago, H.A. Posch, “Mixing, Lyapunov instability, and the approach to equilibrium in a hard-sphere gas”, Phys. Rev. E 55, R9 (1997).

    Article  Google Scholar 

  36. Lj. Milanović, H.A. Posch, “Localized and delocalized modes in the tangent space dynamics of planar dumbbell fluids”, J. Molec. Liquids, 96–97, 221–244 (2002).

    Google Scholar 

  37. Y.G. Sinai, “A remark concerning the thermodynamical limit of the Lyapunov spectrum”, Int. J. of Bifurcation and Chaos Appl. Sci. Eng. 6, 1137 (1996).

    Article  Google Scholar 

  38. D.J. Searles, D.J. Evans, D.J. Isbister, “The number dependence of the maximum Lyapunov exponent”, Physica 240A, 96 (1997).

    Google Scholar 

  39. Y.B. Pesin, “Lyapunov characteristic exponents and ergodic properties of smooth dynamical systems with an invariant measure”, Sov. Math. Dokl. 17, 196 (1976).

    Google Scholar 

  40. C. Dellago, H.A. Posch, “Lyapunov instability, local curvature and the fluid-solid phase transition in two dimensions”, Physica A, 230, 364 (1996).

    Article  Google Scholar 

  41. H. van Beijeren, J.R. Dorfman, H.A. Posch, C. Dellago, “The Kolmogorov-Sinai entropy for dilute gases in equilibrium”, Phys. Rev. E 56, 5272 (1997).

    Article  Google Scholar 

  42. J.R. Dorfman, A. Latz, H. van Beijeren, “B.B.G.K.Y. Hierarchy Methods for Sums of Lyapunov Exponents for Dilute Gases”, preprint.

    Google Scholar 

  43. R. van Zon, H. van Beijeren, C. Dellago, “Largest Lyapunov Exponent for Many Particle Systems at Low Densities”, Phys. Rev. Lett. 80, 2035 (1998).

    Article  Google Scholar 

  44. R. van Zon, H. van Beijeren, J.R. Dorfman, “Kinetic theory estimates for the Kolmogorov-Sinai entropy, and the largest Lyapunov exponents for dilute, hard ball gases and for dilute, random Lorentz gases”, in Hard Ball Systems and the Lorenz Gas, edited by D. Szasz, Encyclopedia of the mathematical sciences 101, Springer Verlag, Berlin (2000).

    Google Scholar 

  45. W.G. Hoover, K. Boercker, H.A. Posch, “Large-system hydrodynamic limit for color conductivity in two dimensions”, Phys. Rev. E 57, 3911 (1998).

    Article  Google Scholar 

  46. L. Milanović, H.A. Posch, W.G. Hoover, “What is ‘Liquid'? Understanding the States of Matter”, Molec. Phys., 95, 281 (1998).

    Article  Google Scholar 

  47. J.-P. Eckmann, C. Forster, H.A. Posch, E. Zabey, “Lyapunov modes in hard-disk systems”, J. Stat. Phys., submitted (2004); arXiv: nlin.CD/0404007.

    Google Scholar 

  48. T. Taniguchi, G. Morriss, “Time-oscillating Lyapunov modes and autocorrelation functions for quasi-one-dimensional systems”, preprint; arXiv: nlin.CD/0404052.

    Google Scholar 

  49. H.A. Posch, W.G. Hoover, “Equilibrium and Nonequilibrium Lyapunov Spectra for Dense Fluids and Solids”, Phys. Rev. A 39, 2175–2188, (1989).

    Article  PubMed  Google Scholar 

  50. E. Wilhelm, “Thermodynamic properties of a hard disk fluid with temperature dependent effective hard sphere diameter”, J. Chem. Phys. 60, 3896 (1974).

    Article  Google Scholar 

  51. C. Dellago, W.G. Hoover, H.A. Posch, “Fluctuations, convergence times, correlation functions, and power laws from many-body Lyapunov spectra for soft and hard disks and spheres”, Phys. Ref. E 65, 056216 (2002).

    Article  Google Scholar 

  52. C. Forster, H.A. Posch, “Lyapunov modes in soft-disk systems”, preprint.

    Google Scholar 

  53. G. Radons, H. Yang, “Static and dynamic correlations in many-particle Pyapunov vectors”, preprint; arXiv: nlin.CD/0404028.

    Google Scholar 

  54. H. Yang, G. Radons, “Lyapunov instabilities of Lennard-Jones fluids”, preprint; arXiv: nlin.CD/0404027.

    Google Scholar 

  55. M.S. Green, “Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena”, J. Chem. Phys. 20, 1281 (1952); “Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena. II Irreversible Processes in Fluids”, 22, 398 (1954).

    Article  Google Scholar 

  56. R. Kubo, “Statistical-Mechanical Theory of Irreversible Processes I. General Theory and Simple Applications to Magnetic and Conduction Problems”, J. Phys. Soc. (Jpn.) 12, 570 (1957).

    Google Scholar 

  57. R. Zwanzig, “Time-Correlation Functions and Transport Coefficients in Statistical Mechanics”, Ann. Rev. Phys. Chem. 16, 67 (1965).

    Article  Google Scholar 

  58. B.J. Alder, T.E. Wainwright, “Decay of the Velocity Autocorrelation Function”, Phys. Rev. A 1, 18 (1970).

    Article  Google Scholar 

  59. B.J. Alder, E.E. Alley, in Perspectives in Statistical Physics, edited by H. J. Raveche (North-Holland, Amsterdam, 1981), p. 3.

    Google Scholar 

  60. W. Loose, G. Ciccotti, “Temperature and temperature control in nonequilibrium-molecular-dynamics simulations of the shear flow of dense liquids”, Phys. Rev. A 45, 3859 (1992).

    Article  PubMed  Google Scholar 

  61. W. Loose, S. Hess, “Anisotropy in velocity space induced by transport processes”, Physica A 174, 47 (1991).

    Article  Google Scholar 

  62. K.F. Gauss, “Über ein neues allgemeines Grundgesetz der Mechanik”, Crelles Journ. f. Math. 4 (1829); gesammelte Werke 5, p. 23.

    Google Scholar 

  63. A. Sommerfeld, Vorlesungen über Theoretische Physik, Band 1: Mechanik, Akademische Verlagsgesellschaft, Leipzig, 1962.

    Google Scholar 

  64. S. Nosé, “A molecular dynamics method for simulations in the canonical ensemble”, Molec. Phys. 52, 255 (1984).

    Google Scholar 

  65. S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods”, J. Chem. Phys. 81, 511 (1984).

    Article  Google Scholar 

  66. W.G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions”, Phys. Rev. A 31, 1695 (1985).

    Article  PubMed  Google Scholar 

  67. H.A. Posch, W.G. Hoover, F.J. Vesely, “Canonical dynamics of Nosé oscillator: Stability, order, and chaos”, Phys. Rev. A 33, 4253 (1986).

    Article  PubMed  Google Scholar 

  68. B.L. Holian, “The character of the nonequilibrium steady state: Beautiful formalism meets ugly reality,” in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, K. Binder and G. Ciccotti, eds., Vol. 49 (Proceedings of the Euroconference on Computer Simulation in Condensed Matter Physics and Chemistry, Italian Physical Society, Bologna, 1996), p.791.

    Google Scholar 

  69. B.L. Holian, W.G. Hoover, H.A. Posch, “Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomistic dynamics”, Phys. Rev. Lett. 59, 10 (1987).

    Article  PubMed  Google Scholar 

  70. W.G. Hoover, H.A. Posch, B.L. Holian, M.J. Gillan, M. Mareschal, C. Massobrio, “Dissipative irreversibility from Nosé's reversible mechanics”, Molec. Simulation 1, 79 (1997).

    Google Scholar 

  71. J. Ramshaw, “Remarks on Non-Hamiltonian Statistical Mechanics”, Europhys. Lett. 59, 319–323 (2002).

    Article  Google Scholar 

  72. B.L. Holian, “Entropy evolution as a guide for replacing the Liouville equation”, Phys. Rev. A 34, 4238 (1986).

    Article  PubMed  Google Scholar 

  73. J. Kaplan, J. Yorke, in Functional Differential Equations and the Approximation of Fixed Points, Vol. 730 of Lecture Notes in Mathematics, eds.: H.O. Peitgen, H.O. Walther (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  74. B. Moran, W.G. Hoover, “Diffusion in a Periodic Lorentz Gas”, J. Stat. Phys. 48, 709 (1987).

    Article  Google Scholar 

  75. N.I. Chernov, G.L. Eyink, J.L. Lebowitz, Y.G. Sinai, “Derivation of Ohmʻs Law in a Deterministic Mechanical Model”, Phys. Rev. Lett. 70, 2209 (1993).

    Article  PubMed  Google Scholar 

  76. H.A. Posch, unpublished.

    Google Scholar 

  77. W.G. Hoover, H.A. Posch, C.G. Hoover, “Fluctuations and Asymmetry via Local Lyapunov Instability in the Time-Reversible Doubly-Thermostated Harmonic Oscillator”, J. Chem. Phys. 115, 5744–5750 (2001).

    Article  Google Scholar 

  78. W.G. Hoover, H.A. Posch, “Shear Viscosity via Global Control of Spatio-Temporal Chaos in Two-Dimensional Isoenergetic Dense Fluids, Phys. Rev. E 51, 273–279 (1995).

    Article  Google Scholar 

  79. W.G. Hoover, H.A. Posch, “Second-Law Irreversibility, and Phase-Space Dimensionality Loss, from Time-Reversible Nonequilibrium Steady-State Lyapunov Spectra”, Phys. Rev. E, 49, 1913–1920 (1994).

    Article  Google Scholar 

  80. M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Clarendon Press, Oxford, 1987).

    Google Scholar 

  81. A.W. Lees, S.F. Edwards, “The computer study of transport processes under extreme conditions”, J. Phys. C5, 1921 (1972).

    Google Scholar 

  82. K. Aoki, D. Kusnezov, “Lyapunov Exponents, Transport, and the Extensivity of Dimensionality Loss”, nlin.CD/0204015.

    Google Scholar 

  83. J.D. Farmer, E. Ott, J.A. Yorke, “The Dimension of Chaotic Attractors”, Physica 7D, 153–180 (1983).

    Google Scholar 

  84. C.P. Dettmann, G.P. Morriss, “Proof of Lyapunov pairing for systems at constant kinetic energy”, Phys. Rev. E 53, R5541 (1996).

    Article  Google Scholar 

  85. S. Sarman, D.J. Evans, G.P. Morriss, “Conjugate-pairing rule and thermal transport coefficient”, Phys. Rev. A 45, 2233 (1992).

    Article  PubMed  Google Scholar 

  86. H.A. Posch, W.G. Hoover, “Heat conduction in one-dimensional chains and nonequilibrium Lyapunov spectrum”, Phys. Rev. E, 58, 4344–4350 (1998).

    Article  Google Scholar 

  87. H.A. Posch, R. Hirschl, W.G. Hoover, “Multifractal phase-space distributions for stationary nonequilibrium systems”, in Dynamics: Models and Kinetic Methods for Nonequilibrium Many-Body Systems, J. Karkheck, ed., NATO ASI Series E: Applied Sciences-Vol. 371, p. 169–189 (Kluwer, Dordrecht, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Posch, H.A., Forster, C. (2005). Lyapunov Instability of Fluids. In: Radons, G., Just, W., Häussler, P. (eds) Collective Dynamics of Nonlinear and Disordered Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26869-3_14

Download citation

Publish with us

Policies and ethics