Skip to main content

Bedeutung der Frontallappen für die Pathophysiologie schizophrener Erkrankungen

  • Chapter
Frontalhirn

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Akbarian S, Kim JJ, Potkin SG, Hetrick WP, Bunney WE, Jones EG (1996) Maldistribution of interstitial neurons in the prefrontal white matter of the brains of schizophrenics. Arch Gen Psychiatry 53: 425–436

    CAS  PubMed  Google Scholar 

  • Akil M, Lewis DA (1997) Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry 154: 1010–1012

    CAS  PubMed  Google Scholar 

  • Alzheimer A (1897) Beiträge zur Pathologischen Anatomie der Hirnrinde und zur anatomischen Grundlage der Psychosen. Mschr Psychiat Neurol 2:82–120

    Google Scholar 

  • Anderson SA, Volk DW, Lewis DA (1996) Increased density of microtobule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophr Res 19:111–119

    Article  CAS  PubMed  Google Scholar 

  • Andreasen NC, Flashman L, Flaum M, Arndt S Swayze V O‚Leary DS et al. (1994) Regional brain abnormalities in schizophrenia measured with magnetic resonance imaging. JAMA 272: 1763–1769

    Article  CAS  PubMed  Google Scholar 

  • Andreasen NC, O’Leary DS, Cizadlo T, Arndt S, Rezal K, Boles Ponto LL, Watkins GL, Hichwa RD (1996) Schizophrenia and cognitive dysmetria: A positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc Nat Acad Sci USA 93: 9985–9990

    Article  CAS  PubMed  Google Scholar 

  • Arnold SE, Hyman BT, VanHösen GW, Damasio AR (1991) Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 48:625–632

    CAS  PubMed  Google Scholar 

  • Arnold SE, Ruscheinsky DD, Han LY (1997) Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses. Biol Psychiatry 42: 639–647

    Article  CAS  PubMed  Google Scholar 

  • Bachus SE, Kleinman JE (1996) The neuropathology of schizophrenia. J Clin Psychiatry 57(suppl 11): 72–83

    Google Scholar 

  • Bagary, MS, Symms MR, Barker GJ, Mutsatsa SH, Joyce EM, Ron MA (2003) Gray and white matter brain abnormalities in first-episode schizophrenia inferred from magnetization transfer imaging. Arch Gen Psychiatry 60: 779–788

    Article  PubMed  Google Scholar 

  • Bahn S (2002) Gene expression in bipolar disorder and schizophrenia: new approaches to old problems. Bipolar Disord 4(Suppl 1): 70–72

    Article  Google Scholar 

  • Barta PE, Pearlson GD, Powers RE, Richards SS, Tune LE (1990) Reduced volume of superior temporal gyrus in schizophrenia; relationship to auditory hallucinations. Am J Psychiatry 147: 1457–1462

    CAS  PubMed  Google Scholar 

  • Bartha R, Williamson PC, Drost DJ, Malla A, Carr TJ, Cortese L, et al. (1997) Measurement of glutamat and glutamine in the medial prefrontal cortex of never treated schizophrenic patients and helthy controls by proton magnetic resonance spectroscopy. Arch Gen Psychiatry 54:959–965

    CAS  PubMed  Google Scholar 

  • Baumann B, Bogerts B (1999) The pathomorphology of schizophrenia and mood disorders: similarities and differences. Schizophr Res 39 141–148

    Article  CAS  PubMed  Google Scholar 

  • Bäumer H (1954)Veränderungen des Thalamus bei Schizophrenie. J Hirnforsch 1: 157–172

    Google Scholar 

  • Beasley CL, Reynolds GP (1997) Parvalbumin-immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophr Res 24: 349–355

    Article  CAS  PubMed  Google Scholar 

  • Benes FM (1995) Altered glutamatergic and GABAergic mechanisms in the cingulate cortex of the schizophrenic brain. Arch Gen Psychiatry 52: 1015–1018

    CAS  PubMed  Google Scholar 

  • Benes FM, Bird ED (1987) An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch Gen Psychiat 44: 608–616

    CAS  PubMed  Google Scholar 

  • Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL (1991) Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 48: 996–1001

    CAS  PubMed  Google Scholar 

  • Bernstein HG, Krell D, Baumann B, Danos P, Falkai P, Diekmann S, Henning H, Bogerts B (1998) Morphometric studies of the entorhinal cortex in neuropsychiatric patients and controls: clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 33: 125–132

    Article  CAS  PubMed  Google Scholar 

  • Bernstein HG, Grecksch G, Becker A, Höllt V, Bogerts B (1999) Cellular changes in rat rain areas associated with neonatal hippocampal damage. NeuroReport 10: 2307–2311

    CAS  PubMed  Google Scholar 

  • Bertolino A, Saunders RC Mattay VS, Bachevalier J, Frank JA, Weinberger DR (1997) Altered development of prefrontal neurons in rhesus monkey with neonatal mesial temporolimbic lesions: a proton magnetic resonance spectroscopic imaging study. Cereb Cortex 7: 740–748

    Article  CAS  PubMed  Google Scholar 

  • Bertolino A, Esposito G, Callicott JH, Mattay VS, vanHorn JD, Frank JA, Berman KF, Weinberger DR (2000) Specific relationship between prefrontal neuronal Nacetylaspartrate and activation of the working memory cortical network in schizophrenia. Am J Psychiatry 157: 26–33

    CAS  PubMed  Google Scholar 

  • Bilder RM, Wu H, Bogerts B, Degreef G, Ashtari M, Alvier JM, Snyder P, Lieberman J (1994) Absence of regional hemispheric volume asymmetries in first episode schizophrenia. Am J Psychiatry 151: 1437–1447

    CAS  PubMed  Google Scholar 

  • Bilder RM, Bogerts B, Ashtari M, Wu H, Alvir JMA, Jody D, Reiter G, Bell L, Lieberman JA (1995) Anterior hippocampal volume reductions predict »frontal lobe« dysfunction in first episode schizophrenia. Schizophr Res 17: 47–58

    Article  CAS  PubMed  Google Scholar 

  • Bogerts B (1984) Zur Neuropathologie der Schizophrenien. Fortschr Neurol Psychiat 52: 428–437

    CAS  PubMed  Google Scholar 

  • Bogerts B (1991) The neuropathology of schizophrenia: Pathophysiological and neurodevelopmental implications. In: Mednick SA, Cannon TD, Barr CE (eds) Fetal neural development and adult schizophrenia. Cambridge University Press, Cambridge, pp 153–173

    Google Scholar 

  • Bogerts B (1997) The temporolimbic system theory of positive schizophrenic symptoms. Schizophr Bull 23: 423–435

    CAS  PubMed  Google Scholar 

  • Bogerts B (1999) The neuropathology of schizophrenic diseases. Eur Arch Psych Clin Neurosci 249:Suppl 4 IV/2–IV/13

    Google Scholar 

  • Bogerts B, Falkai P (2000) Neuroanatomische und neuropathologische Grundlagen psychischer Störungen. In: Helmchen H, Henn F, Lauter H, Satorius N (Hrsg.) Psychiatrie der Gegenwart, Bd. 1. Springer, Berlin Heidelberg New York Tokio, S 277–310

    Google Scholar 

  • Bogerts B, Häntsch J, Herzer M (1983) A morphometric study of the dopamine containing cell groups in the mesencephalon of normals, Parkinson patients and schizophrenics. Biol Psychiat 18: 951–960

    CAS  PubMed  Google Scholar 

  • Bogerts B, Wurthmann C, Piroth HD (1987) Hirnsubstanzdefizit mit paralimbischem und limbischem Schwerpunkt im CT Schizophrener. Nervenarzt 58: 97–106

    CAS  PubMed  Google Scholar 

  • Bogerts B, Falkai P, Haupts M, Greve B, Ernst S, Tapernon-Franz U, Heinzmann U (1990) Post-mortem volume measurements of limbic system and basal ganglia structures in chronic schizophrenics. Schizophr Res 3: 295–301

    Article  CAS  PubMed  Google Scholar 

  • Bryant NL, Buchanan RW, Vladar K, Breier A, Rothman M (1999) Gender differences in temporal structures of patients with schizophrenia: A volumetric MRI study. Am J Psychiatry 156:603–609

    CAS  PubMed  Google Scholar 

  • Buckner RL, Kelley WM, Petersen SE (1999) Frontal cortex contributes to memory formation. Nature Neurosci 2: 311–314

    Article  CAS  PubMed  Google Scholar 

  • Buttlar-Brentano K von (1956) Zur weiteren Kenntnis der Veränderungen des Basalkerns bei Schizophrenen. J Hirnforsch 2: 271–291

    PubMed  Google Scholar 

  • Callicot JH, Bertolino A, Egan MF, Mattay VS, Langheim FJP, Weinberger D (2000) Selective relationship between prefrontal N-acetylaspartrat measures and negative symptoms in schizophrenia Am J Psychiatry 157: 1646–1651

    Article  PubMed  Google Scholar 

  • Cannon TD, Mednick SA, Parnas J, Schulsinger F, Praestholm J, Vestergaard A (1993) Developmental brain abnormalities in the offspring of schizophrenic mothers. I. Contribution of genetic and perinatal factors. Arch Gen Psychiatry 50: 551–564

    CAS  PubMed  Google Scholar 

  • Chemerinski E, Nopoulos PC, Crespo-Facorro B, Andreasen NC, Magnotta V (2002) Morphology of the ventral frontal cortex in schizophrenia: relationship with social dysfunction. Biol Psychiatry 52:,1–8

    Article  PubMed  Google Scholar 

  • Crow TJ (1990) Temporal lobe asymmetries as the key to the etiology of schizophrenia. Schizophr Bull 16(3): 434–443

    Google Scholar 

  • Crow TJ (1993) Schizophrenia as an anomaly of cerebral asymmetry. In: Maurer K (ed) Imaging of the brain in psychiatry and related fields. Springer, Berlin Heidelberg New York Tokio, pp 2–17

    Google Scholar 

  • Curtis VA, Bullmore ET, Morris RG, Brammer MJ, Williams SCR, Simmons A, et al. (1999) Attenuated frontal activation in schizophrenia may be task dependent. Schizophr Res 37: 35–44

    Article  CAS  PubMed  Google Scholar 

  • Danos P, Baumann B, Bernstein HG, Franz M, Stauch R, Northoff G, Krell D, Falkai P, Bogerts B (1998) Schizophrenia and anteroventral nucleus: selective decrease of parvalbumin-immunoreactive thalamocortical projection neurons. Psychiatry Res Neuroimaging 82: 1–10

    Article  CAS  Google Scholar 

  • Davison K, Bagley CR (1969) Schizophrenia-like psychosis associated with organic disorders of the central nervous system. A review of the literature. In: Hertington RN (ed) Current problems in neuropsychiatry. Br J Psychiatry Special Publ 4: 113–187

    Google Scholar 

  • Daviss SR, Lewis DA (1995) Local circuit neurons of the prefrontal cortex in schizophrenia: selective increase in the density of calbindin-immunoreactive neurons. Psychiatry Res 59: 81–96

    Article  CAS  PubMed  Google Scholar 

  • Degreef G, Bogerts B, Falkai P, Greve B, Lantos G, Ashtari M, Lieberman J (1992a) Increased prevalence of the cavum septum pellucidum in MRI scans and postmortem brains of schizophrenic patients. Psychiatr Res Neuroimaging 45: 1–13

    Article  CAS  Google Scholar 

  • Degreef G, Ashtari M, Bogerts B, Bilder RM, Jody DN, Alvir JMJ, Lieberman JA (1992b) Volumes of ventricular system subdivisions measured from magnetic resonance images in first episode schizophrenic patients. Arch Gen Psychiatry 49: 531–537

    CAS  PubMed  Google Scholar 

  • Deiken RF, Zhou L, Corwin F, Vinogradov S, Weiner MW (1997) Decreased left frontal lobe N-acetylaspartrate in schizophrenia. Am J Psychiatry 154:688–690

    PubMed  Google Scholar 

  • DeLisi LE, Sakuma M, Tew W, Kushner M, Hoff AL, Grimson R (1997) Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia. Psychiatry Res 76: 131–138

    PubMed  Google Scholar 

  • Eastwood SL, Burnet PW, Harrison PJ (1995) Altered synaptophysin expression as a marker of synaptic pathology in schizophrenia. Neuroscience 66: 309–319

    Article  CAS  PubMed  Google Scholar 

  • Erkwoh R, Sabril O, Willmes K, Steinmeyer EM, Büll U, Saß H (1999) Aspekte zerebraler Konnektivität bei Schizophrenie. Fortschr Neurol Psych 67: 318–326

    CAS  Google Scholar 

  • Falkai P, Bogerts B, Rozumek M (1988a) Cell loss and volume reduction in the entorhinal cortex of schizophrenics. Biol Psychiatry 24: 515–521

    Article  CAS  PubMed  Google Scholar 

  • Falkai P, Bogerts B, Roberts GW, Crow TJ (1988b) Measurement of the alpha-cell-migration in the entorhinal region: a marker for developmental disturbances in schizophrenia? Schizophr Res 1: 157–158

    Article  Google Scholar 

  • Falkai P, Bogerts B, Schneider T, Greve B, Pfeiffer U et.al. (1995a) Disturbed planum temporale asymmetry in schizophrenia. A quantitative post-mortem study. Schizophr Res 14: 161–167

    Article  CAS  PubMed  Google Scholar 

  • Falkai P, Schneider T, Greve B, Klieser E, Bogerts B (1995b) Reduced frontal and occipital lobe asymmetry on CT-scans of schizophrenic patients. Its specifity and clinical significance. J Neural Transm (GenSect) 99: 63–77

    Article  CAS  Google Scholar 

  • Falkai P, Honert WG, David B, Bogerts B, Majtenyi C, Bayer TA (1999) No evidence for astrogliosis in brain of schizophrenic patients. A post-mortem study. Neuropathol Appl Neurobiol 25: 48–53

    Article  CAS  PubMed  Google Scholar 

  • Fallgatter AJ, Strick WK (2000) Reduced frontal activation asymmetry in schizophrenia during a cued continous performance test assessed with near-infrared spectroscopy. Schizophr Bull 26(4): 913–919

    CAS  PubMed  Google Scholar 

  • Flor-Henry P (1969) Psychosis and temporal lobe epilepsy: a controlled investigation. Epilepsia 10: 363–395

    CAS  PubMed  Google Scholar 

  • Fünfgeld E (1925) Pathologisch-anatomische Untersuchungen bei Dementia praecox mit besonderer Berücksichtigung des Thalamus opticus. Z ges Neurol Psychiat 95: 411–463

    Google Scholar 

  • Fünfgeld EW (1952) Der Nucleus anterior thalami bei Schizophrenie. J Hirnforsch 1:147–155

    Google Scholar 

  • Fuster JM (1989) The prefrontal cortex. Raven, New York

    Google Scholar 

  • Glantz LA, Lewis DA (1997) Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia: regional and diagnostic specifity, Arch Gen Psychiatry 54: 943–952

    CAS  PubMed  Google Scholar 

  • Glanz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73

    Article  PubMed  Google Scholar 

  • Goldman-Rakic P (1994) Cerebral cortical mechanisms in schizophrenia. Neuropsychopharmacol 10(suppl 3): 22–27

    Google Scholar 

  • Greenwood R, Bhalla A, Gordon A, Roberts J (1983) Behavior disturbances during recovery from herpes simplex encephalitis. J Neurol Neurosurg Psychiatr 46: 809–817

    CAS  PubMed  Google Scholar 

  • Gur RE, Cowell PE, Turetsky BI, Gallacher F, Cannon T, Bilker WB, Gur RC (1998) A follow-up magnetic resonance imaging study of schizophrenia. Relationsships of neuroanatomical changes to clinical and neurobehavioral measures. Arch Gen Psychiatry 55: 145–152

    Article  CAS  PubMed  Google Scholar 

  • Gur RE, Cowell PE, Latshaw A, Turetsky BI, Grossmann RI, Arnold S, Bilker WB, Gur RC (2000a) Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 57: 761–768

    Article  CAS  PubMed  Google Scholar 

  • Gur RE, Turetsky BI, Cowell PE, Finkelman C, Maany V, Grossman RI, Arnold SE, Bilker WB, Gur RC (2000b) Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57: 769–775

    Article  CAS  PubMed  Google Scholar 

  • Harrison PJ (1999) The neuropathology of schizophrenia A critical review of the data and their interpretation. Brain 122: 593–624

    Article  PubMed  Google Scholar 

  • Harvey I, Ron MA, Du Boulay G, Wicks SW, Lewis SW, Murray RM (1993) Reduction of cortical volume in schizophrenia on magnetic resonance imaging. Psychol Med: 23: 591–604

    CAS  PubMed  Google Scholar 

  • Heath RG (1982) Psychosis and epilepsy: similarities and differences in the anatomic-physiologic substrate. In: Koella WP, Trimble MR (eds) Temporal lobe epilepsy, mania and schizophrenia and the limbic system. Karger, Basel, pp 106–16

    Google Scholar 

  • Heckers S, Goff D, Schacter DL, Savage CR, Fischman AJ, Alpert NM, Rauch SL (1999) Functional imaging of memory retrieval in deficit vs. nondeficit schizophrenia. Arch Gen Psychiatry 56: 1117–1123

    Article  CAS  PubMed  Google Scholar 

  • Heckers S, Curran T, Goff D, Rauch SL, Fischman, Alpert NM, Schacter DL (2000) Abnormalities in the thalamus and prefrontal cortex during episodic object recognition in schizophrenia. Biol Psychiatry 48: 651–657

    Article  CAS  PubMed  Google Scholar 

  • Heinsen H, Gössmann E, Rüb U, Eisenmenger W, Bauer M, Ulmar G, Bethke B, Schüler M, Schmitt HP, Götz M, Lockemann U, Püshel K (1996) Variability in the human entorhinal region may confound neuropsychiatric diagnoses. Acta Anatomica 157: 226–237

    CAS  PubMed  Google Scholar 

  • Hempel KJ (1958) Histopathologische Untersuchungen an Supranucleus medio-dorsalis thalami bei Schizophrenie. J Hirnforsch 4: 205–253

    CAS  PubMed  Google Scholar 

  • Hempel KJ, Treff WM (1959) Über »normale Lücken« und »pathologische Lückenbildungen« in einem subcorticalen Griseum (mediodorsaler Thalamuskern). Beitr pathol Anat 121: 287–300

    Google Scholar 

  • Hess WR (1949) Das Zwischenhirn. Schwabe, Basel

    Google Scholar 

  • Heyck H (1954) Kritischer Beitrag zur Frage anatomischer Veränderungen im Thalamus bei Schizophrenie. Mschr Psychiat Neurol 128: 106–128.

    CAS  Google Scholar 

  • Hillbom E (1951) Schizophrenia-like psychoses after brain trauma. Acta Psychiat Neurol Scand 60: 36–47

    Google Scholar 

  • Hoesen GWvan (1982) The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5: 345–350

    Article  Google Scholar 

  • Hof PR, Haroutunian V, Copland C, Davis KL, Buxbaum JD (2002) Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem Res 27: 1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Hopf A (1954) Orientierende Untersuchungen zur Frage pathoanatomischer Veränderungen im Pallidum und Striatum bei Schizophrenie. J Hirnforsch 1: 97–145

    Google Scholar 

  • Huber G (1961) Chronische Schizophrenie. Synopsis klinischer und neuroradiologischer Untersuchungen an defektschizophrenen Anstaltspatienten. Einzeldarstellungen aus der theoretischen und klinischen Medizin, Bd. 13. Hüthig, Heidelberg

    Google Scholar 

  • Ibrahim HM, Hogg AJ, Healy DJ, Haroutunian V, Davis KL, Meador-Woodruff JH (2000) Jonotropic glutamat receptor binding and subunit mRNA expression in thalamic nuclei of schizophrenia. Am J Psychiatry 157: 1811–1823

    Article  CAS  PubMed  Google Scholar 

  • Ingvar DH, Franzen G (1974) abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatr Scand 50: 425–462

    CAS  PubMed  Google Scholar 

  • Jakob J, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transmiss 65: 303–326

    Article  CAS  Google Scholar 

  • Johnstone EC, Crow TJ, Frith CD, Husband J, Kreel L (1976) Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet 2: 924–926

    Article  CAS  PubMed  Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–820

    CAS  PubMed  Google Scholar 

  • Jönsson SA, Luts A, Guldberg-Kjaer N, Brun A (1997) Hippocampal pyramidal cell disarray correlates negatively to cell number: implications for the pathogenesis of schizophrenia. Eur Arch Psychiatry Clin Neurosci 247: 120–127

    PubMed  Google Scholar 

  • Kalus P, Senitz D (1996) Parvalbumin in the human anterior cingulate cortex. morphological heterogeneity of inhibitory interneurons. Brain Res 729: 45–54

    Article  CAS  PubMed  Google Scholar 

  • Katsetos CD, Hyde TM, Herman MM (1997) Neuropathology of the cerebellum in Schizophrenia — An update: 1996 and future directions. Biol Psychiatry 42: 213–224

    Article  CAS  PubMed  Google Scholar 

  • Kegeles LS, Humaran TJ, Mann JJ (1998) In vivo neurochemistry of the brain in schizophrenia as revealed by magnetic resonance spectroscopy. Biol Psychiatry 44: 382–398

    Article  CAS  PubMed  Google Scholar 

  • Kozlovsky N, Belmaker RH, Agam G (2000) Low GSK-3β immunoreactivity in postmortem frontal cortex of schizophrenic patients. Am J Psychiatry 157: 831–833

    Article  CAS  PubMed  Google Scholar 

  • Krimer LS, Herman MM, Saunders RC, Boyd JC, Hyde TM, Carter JM, Kleinman JE, Weinberger DR (1997) A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia. Cereb Cortex 7: 732–739

    Article  CAS  PubMed  Google Scholar 

  • Kubicki M, Westin CF, Maier SE, Frumin M, Nestor PG, Salisbury DF, Kikinis R, Jolesz FA, McCarley RW, Shenton ME (2002) Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. Am J Psychiatry 159: 813–820.

    Article  PubMed  Google Scholar 

  • Kuperberg GR, Broome MR, McGuire PK, David AS, Eddy M, Ozawa F, Goff D, West WC, Williams SC, van der Kouwe AJ, Salat DH, Dale A M, Fischl B (2003) Regionally localized thinning of the cerebral cortex in schizophrenia. Arch Gen Psychiatry 60: 878–888

    Article  PubMed  Google Scholar 

  • Lawrie SM, Abukmeil SS (1998) Brain abnormality in schizophrenia. Br J Psychiatry 172:110–120

    CAS  PubMed  Google Scholar 

  • Lawrie SM, Abukmeil SS, Chiswick A, Egan V, Santosh CG, Best JJ (1997) Qualitative cerebral morpology in schizophrenia: a magnetic resonance imaging study and systematic literature review. Schizophrenia Res 25: 155–166

    Article  CAS  Google Scholar 

  • Lawrie SM, Whalley H, Kestelman JN, Abukmeil SS, Byrne M, Hodges A, Rimmington JE, Best JJK, Owens DGC, Johnstone EC (1999) Magnetic resonance imaging of brain in people at high risk of developing schizophrenia. Lancet 353:30–33

    Article  CAS  PubMed  Google Scholar 

  • Lesch A, Bogerts B (1984) The diencephalon in schizophrenia: Evidence for reduced thickness of periventricular grey matter. Europ Arch Psychiat Neurol Sci 234: 212–219

    Article  CAS  Google Scholar 

  • Lewis DA, Pierry JN, Volk DW, Melchitzky DS, Woo TUW (1999) Altered GABA neurotransmission and prefrontal cortical dysfunction in schizophrenia. Biol Psychiatry 46: 616–626

    Article  CAS  PubMed  Google Scholar 

  • Lewis SW (1995)The secondary schizophrenias. In: Hirsch S, Weinberger DR(eds) Schizophrenia. Blackwell Science. Oxford, pp 324–340

    Google Scholar 

  • Lieberman J, Bogerts B, Degreef, G., Ashtari M, Alvir J (1992) Qualitative assessment of brain morphology in acute and chronic schizophrenia. Am J Psychiatry 149: 784–791

    CAS  PubMed  Google Scholar 

  • Malamud M (1967) Psychiatric disorder with intracranial tumors of the limbic system. Arch Neurol 17: 113–123

    CAS  PubMed  Google Scholar 

  • McCarley RW, Hsiao JK, Freedman R, Pfefferbaum A, Donchin E (1996) Neuroimaging and the cognitive neuroscience of schizophrenia. Schizophrenia Bull 22:703–725

    CAS  Google Scholar 

  • McLardy (1974) Hippocampal zinc and structural deficit in brains from chronic alcoholics and some schizophrenics. J Orthomol Psychiatry 4: 32–36

    Google Scholar 

  • McLean PD (1952) Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroenceph Clin Neurophysiol 4: 407–418

    Article  Google Scholar 

  • Meisenzahl EM, Rujescu D, Kirner A, Giegling I, Kathmann N, Leinsinger G, Maag K, Hegerl U, Hahn K, Moller HJ (2001) Association of an interleukin-1beta genetic polymorphism with altered brain structure in patients with schizophrenia. Am J Psychiatry 158: 1316–1319

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM (1986) Patterns in behavioral neuroanatomy: association areas, the limbic system, and hemispheric specialization. In: Mesulam MM (eds) Principles of behavioral neurology. Davis, Philadelphia, pp 1–70

    Google Scholar 

  • Miller EK (1999) The prefrontal cortex: complex neural properties for complex behavior. Neuron 22: 15–17

    Article  CAS  PubMed  Google Scholar 

  • Millner R (1992) Cortico-hippocampal interplay and the representation of contexts in the brain. Springer, Berlin Heidelberg New York Tokio

    Google Scholar 

  • Mulder DW, Daly D (1952) Psychiatric symptoms associated with lesions of the temporal lobe. JAMA 150: 173–176

    CAS  Google Scholar 

  • Nasrallah HA, Olson SC, McCalley-Witters M, Chapman S, Jacoby CG (1986) Cerebral ventricular enlargement in schizophrenia: A preliminary follow-up study. Arch Gen Psychiatry 43:157–159

    CAS  PubMed  Google Scholar 

  • Nelson MD, Saykin AJ, Flashman LA, Riordan HJ (1998) Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging. Arch Gen Psychiatry 55:433–440

    Article  CAS  PubMed  Google Scholar 

  • Newman NJ, Bell IR, McKee AC (1990) Paraneoplastic limbic encephalitis: neuropsychiatric presentation. Biological Psychiatry 27: 529–542

    Article  CAS  PubMed  Google Scholar 

  • Niznikiewicz MA, Kubicki M, Shenton E (2003) Recent structural and functional imaging findings in schizophrenia. Curr Opin Psychiatry 16: 123–147

    Article  Google Scholar 

  • Northoff G, Waters H, Mooren I, Schlüter U, Diekmann S, Falkai P, Bogerts B (1999) Cortical sulcal enlargement in catatonic schizophrenia: a planimetric CT study. Psychiatr Res Neuroimag 91: 45–54

    Article  CAS  Google Scholar 

  • Os J van, Fahy A, Jones P, Harvey I, Lewis S, Williams M, Toone B, Murray R (1995) Increased intracerebral cerebrospinal fluid spaces predict unemployment and negative symptoms in psychotic illness — a prospective study. Brit J Psychiatry 166: 750–758

    Google Scholar 

  • Pakkenberg B (1990) Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 47: 1023–1028

    CAS  PubMed  Google Scholar 

  • Pakkenberg B (1992) The volume of the mediodorsal thalamic nucleus in treated and untreated schizophrenics. Schizophr Res 7: 95–100

    Article  CAS  PubMed  Google Scholar 

  • Palkovits M, Zaborski L (1979) Neural connections of the hypothalamus. In: Morgane PJ (eds) Anatomy of the hypothalamus. Decker, New York, pp 379–509

    Google Scholar 

  • Perez MM, Trimble MR, Reider I, Murray M (1984) Epileptic psychosis, a further evaluation of PSE profiles. Br J Psychiatry 146: 155–163

    Google Scholar 

  • Peters G (1967) Neuropathologie und Psychiatrie. In: Gruhle HW, Jung R, Mayer-Gross W, Müller M (Hrsg) Psychiatrie der Gegenwart, Bd. I/1 A. Springer, Berlin Heidelberg New York, S 286–298

    Google Scholar 

  • Pierry JN, Chaudry AS, Woo TUW, Lewis DA (1999) Alteations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. Am J Psychiatry 156: 1709–1719

    PubMed  Google Scholar 

  • Raz S (1993) Structural cerebral pathology in schizophrenia: Regional or diffuse? J Abnorm Psychol 102: 445–452

    Article  CAS  PubMed  Google Scholar 

  • Ross CA, Pearlson GD (1996) Schizophrenia, the heteromodal association neocortex and development: potential for a neurogenetic approach. Trends Neurosci 19: 416–417

    PubMed  Google Scholar 

  • Sauer H, Volz HP (2000) Functional magnetic resonance imaging and magnetic resonance spectroscopy in schizophrenia. Curr Opin Psychiatry 13: 21–26

    Article  Google Scholar 

  • Scheibel AB, Kovelman JA (1981) Disorientation of the hippocampal pyramidal cells and its processes in the schizophrenic patient. Biol Psychiat 16: 101–102

    Google Scholar 

  • Schlaepfer TE, Harris GJ, Tien AY, Peng LW, Lee S, Federman EB, Chase GA, Barta PE, Pearlson GD (1994) Decreased regional cortical gray matter volume in schizophrenia. Am J Psychiatry 151: 842–848

    CAS  PubMed  Google Scholar 

  • Selemon LD, Godman-Rakic PS (1999) The reduced neuropil hypothesis: A circuit based model of schizophrenia. Biol. Psychiatry 45: 17–25

    Article  CAS  PubMed  Google Scholar 

  • Selemon LD, Rajkowska PS, Goldman-Rakic PS (1995) Abnormally high neuronal density in the schizophrenic cortex. A morphometric anaysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 52: 805–818

    CAS  PubMed  Google Scholar 

  • Selemon LD, Lodow MS, Goldman-Rakic PS (1999) Increased volume and glial density in primate prefrontal cortex associated with chronic antipsychotic drug exposure. Biol Psychiatry 46: 161–172

    Article  CAS  PubMed  Google Scholar 

  • Senitz D, Winkelmann E (1991) Neuronale Struktur-Anomalität im orbitofrontalen Cortex bei Schizophrenie. J Hirnforsch 32: 149–158

    CAS  PubMed  Google Scholar 

  • Shapiro RM (1993) Regional neuropathology in schizophrenia: Where are we? Where are we going? Schizophr Res 10: 187–239

    Article  CAS  PubMed  Google Scholar 

  • Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49: 1–52

    Article  CAS  Google Scholar 

  • Slater E, Beard AW, Glithero E (1963) The schizophrenia-like psychosis of epilepsy. Br J Psychiatry 109: 95–150

    CAS  PubMed  Google Scholar 

  • Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283: 1657–1661

    Article  CAS  PubMed  Google Scholar 

  • Southard EE (1915) On the topographic distribution of cortex lesions and abnormalities in dementia praecox wih some account of their functional significance Am J Insanity 71: 603–671

    Google Scholar 

  • Staal WG, Hulshoff Pol HE, Schnack H, Van der Schot AC, Kahn RS (1998) Partial volume decrease of the thalamus in relatives of patients with schizophrenia 155:1784–1786

    CAS  Google Scholar 

  • Stevens AA, Goldmann-Rakic PS, Gore JC, Fulbright RK, Wexler BE (1998) Cortical dysfunction in schizophrenia during auditoy word and tone working memory demonstrated by functional magnetic resonance imaging. Arch Gen Psychiatry 55:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Swanson LW (1983) The hippocampus and the concept of limbic system. In: Seifert W (ed) Neurobiology of the hippocampus. Academic Press, London, pp 3–19

    Google Scholar 

  • Travis MJ, Kerwin R (1997) Schizophrenia — Neuroimaging. Curr Opin Psychiatry 10:16–25

    Article  Google Scholar 

  • Vita A, Saccetti G, Cazullo CL (1988) Brain morphology in schizophrenia: A 2-to 5-year CT scan follow-up study. Acta Psychiatrica Scan 78:618–621

    CAS  Google Scholar 

  • Vogeley K, Schneider-Axmann, Pfeiffer U, Tepest R, Bayer T, Bogerts B, Honer W, Falkai P (2000) Disturbed gyrification of the prefrontal region in male schizophrenic patients: a morphometric postmortem study. Am J Psychiatry 157: 34–39

    CAS  PubMed  Google Scholar 

  • Vogt C, Vogt O (1948) Über anatomische Substrate. Bemerkungen zu pathoanatomischen Befunden bei Schizophrenie. Ärztl Forsch 3: 1–7

    Google Scholar 

  • Vogt C, Vogt O (1952) Résultats de l étude anatomique de la schizophrenie et d’autres psychoses dites fontionelles faite a I’institut du cerveau de Neustadt, Schwarzwald. Proc 1st Int Congr Neuropath, vol 1. Rosenberg & Sellier, Turin, pp 515–532

    Google Scholar 

  • Volk DW, Austin MC, Pierry JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical g-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57: 237–245

    Article  CAS  PubMed  Google Scholar 

  • Volz HP, Gaser C, Hager F, Rzanny R, Mentzel HJ, Kreitschmann-Andermahr I, Kaiser WA, Sauer H (1997) Bain activation during cognitive stimulation with the Wisconson Card Sorting Test: A functional MRI study on healthy volunteers and schizophrenics. Psychiatry Res 31:145–157

    Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660–669

    CAS  PubMed  Google Scholar 

  • Weinberger DR, Berman KF, Suddath R, Torrey EF (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: A magnetic resonance imaging and regional cerebral blood flow study of discordant monocygotic twins. Am J Psychiatry 149: 890–897

    CAS  PubMed  Google Scholar 

  • Weinberger DR, Berman KF, Zec RF (1986) Physiologic dysfunction of the dorsolateral prefrontal cortex in schizophrenia: I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 43: 114–124

    CAS  PubMed  Google Scholar 

  • Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50: 825–844

    Article  CAS  PubMed  Google Scholar 

  • Wible CG, Anderson J, Shenton ME, Kricun A, Hirayasu Y, Tanaka S, Levitt JJ, O’Donnell BF, Kikinis R, Jolesz FA, McCarley RW (2001) Prefrontal cortex, negative symptoms, and schizophrenia: an MRI study. Psychiatry Res 108: 65–78

    CAS  PubMed  Google Scholar 

  • Woo TU, Miller JL, Lewis DA (1997) Schizophrenia and the Parvalbumin-containing class of cortical local circuit neurons. Am J Psychiatry 154: 1013–1015

    CAS  PubMed  Google Scholar 

  • Woo TU, Whitehead RE, Melchitzky DS, Lewis DA (1998) A subclass of prefrontal gamma-aminobutyric acid axon terminals are seletively altered in schizophrenia. Proc Natl Acad Sci USA 93: 5341–5346

    Article  Google Scholar 

  • Woodruff PWR, Wright IC, Shuriquie N, Russouw H, Rushe T, Howard RJ, Graves M, Bullmore ET, Murray RM (1997) Struktural brain abnormalities in male schizophrenics reflect fronto-temporal dissociation. Psychol Med 27: 1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Woods BT (1998) Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 155: 1661–1670

    CAS  PubMed  Google Scholar 

  • Woods BT Yurgelun-Todd D, Benes FM, Frankenburg FR, Pope HG, MCSparren J (1990) Progressive ventricular enlargement in schizophrenia: Comparison to bipolar affective disorder and correlation with clinical course. Biol Psychiatry 27:341–352

    Article  CAS  PubMed  Google Scholar 

  • Wright IC, Rabe-Hesketh SR, Woodruff PWR, David AS, Murray RM, Bullmore ET (2000) Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 157: 16–25

    CAS  PubMed  Google Scholar 

  • Young KA, Manaye KF, Liang CL, Hicks PB, German DC (2000) Reduced number of mediodorsal an anterior thalamic neurons in schizophrenia. Biol Psychiatry 47: 944–953

    Article  CAS  PubMed  Google Scholar 

  • Zipurski RB, Marsh L, Lim KO, Dement S, Shear PK, Sullivan EV, Murphy GM, Csernansky JG, Pfefferbaum A (1994) Volumetric assessment of temporal lobe structures in schizophrenia. Biol Psychiatry 35: 501–516

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Bogertsc, B. (2005). Bedeutung der Frontallappen für die Pathophysiologie schizophrener Erkrankungen. In: Förstl, H. (eds) Frontalhirn. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26841-3_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-26841-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20485-5

  • Online ISBN: 978-3-540-26841-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics