Skip to main content

Bubble departure diameter

  • Chapter
Multiphase Flow Dynamics 2
  • 1276 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Borishanskii V, Bobrovich G, Minchenko F (1961) Heat transfer from a tube to water and to ethanol in nucleate pool boiling, Symposium of Heat Transfer and Hydraulics in Two-Phase Media, Kutateladze SS (ed) Gosenergoizdat, Moscow

    Google Scholar 

  2. Cole R, Rohsenow WM (1969) Correlation of bubble departure diameters for boiling of saturated liquids, Chem. Eng. Prog. Symp. Ser., vol 65 no 92 pp 211–213

    Google Scholar 

  3. Cornwell K, Brown RD (1978) Boiling surface topology, Proc. 6th Int. Heat Transfer Conf., Toronto, vol 1 pp 157–161

    Google Scholar 

  4. Fritz W (1935) Berechnung des maximalen Volumens von Dampfblasen, Phys. Z., vol 36 no 11 pp 379–384.

    Google Scholar 

  5. Gaertner RF, Westwater JW (1960) Population of active sites in nucleate boiling heat transfer, Chem. Eng. Progr. Symp. Ser, vol 30 pp 39–48

    Google Scholar 

  6. Gaertner RF (Feb. 1965) Photographic study of nucleate pool boiling on a horizontal surface, Transaction of the ASME, Journal of Heat Transfer, pp 17–29

    Google Scholar 

  7. Gaertner RF (1963) Distribution of active sites in the nucleate boiling of liquids, Chem. Eng. Prog. Symp. Series, no 41 vol 59 pp 52–61

    Google Scholar 

  8. Hsu YY, Graham RW (1976) Transport processes in boiling and two-phase systems, Hemisphere Publishing Corporation, Washington-London, Mc Graw-Hill Book Company, New York

    Google Scholar 

  9. lida Y, Kobayasi K (1970) An experimental investigation on the mechanism of pool boiling phenomena by a probe method, 4th Int. Heat Transfer Conf., Paris-Versailles, vol 5 no 3 B13 pp 1–11

    Google Scholar 

  10. Ishii M, Zuber N (1978) Relative motion, interfacial drag coefficients in dispersed two-phase flow of bubbles, drops and particles, Paper 56a, AIChE 71st Ann. Meeting, Miami

    Google Scholar 

  11. Jakob M, Fritz W (1931) Forsch. Ing.-Wes., vol 2 p 435

    Google Scholar 

  12. Jakob M (1932) Kondensation und Verdampfung, Zeitschrift des Vereins deutscher Ingenieure, vol 76 no 48 pp 1161–1170

    Google Scholar 

  13. Jakob M, Linke W (1933) Der Waermeuebergang von einer waagerechten Platte an siedendes Wasser, Forsch. Ing. Wes., vol 4 pp 75–81

    Google Scholar 

  14. Jones OC (1992) Nonequilibrium phase change-1. Flashing inception, critical flow, and void development in ducts, in Lahey RT Jr (ed) Boiling Heat Transfer, Elsevier Science Publishers B.V., pp 189–234

    Google Scholar 

  15. Jones OC (1992) Nonequilibrium Phase Change-2. Relaxation models, general applications, and post heat transfer, in Lahey RT Jr (ed) Boiling Heat Transfer, Elsevier Science Publishers B.V., pp 447–482

    Google Scholar 

  16. Klausner JF, Mei R, Bernard DM, Zeng LZ (1993) Vapor bubble departure in forced convection boiling, Int. J. of Heat and Mass Transfer, vol 36 no 3 pp 651–662

    Google Scholar 

  17. Kocamustafaogullari G, Ishii M (1983) Interfacial area and nucleation site density in boiling systems, Int. J. Heat Mass Transfer, vol 26 no 9 pp 1377–1389

    Google Scholar 

  18. Kolev NI (October 5–8 1993) IVA3 NW: Computer code for modeling of transient three phase flow in complicated 3D geometry connected with industrial networks, Proc. of the Sixt International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Grenoble, France

    Google Scholar 

  19. Kolev NI (1993) The code IVA3 for modeling of transient three-phase flows in complicated 3D geometry, Kerntechnik, vol 58 no 3 pp 147–156

    Google Scholar 

  20. Kolev NI (1993) Fragmentation and coalescence dynamics in multi-phase flows, Experimental Thermal and Fluid Science, Elsevier, vol 6 pp 211–251

    Article  Google Scholar 

  21. Kolev NI (1994) The influence of mutual bubble interaction on the bubble departure diameter, Experimental Thermal and Fluid Science, Elsevier, vol 8 pp 167–174

    Article  Google Scholar 

  22. Koumoutsos N, Moissis R, Spyridonos A (May 1968) A study of bubble departure in forced-convection boiling, Journal of Heat Transfer, Transactions of the ASME pp 223–230

    Google Scholar 

  23. van Krevelen DW, Hoftijzer PJ (1950) Studies of gas-bubble formulation, calculation of interfacial area in bubble contactor, Chem. Eng. Progr. Symp. Ser., vol 46 no 1 pp. 29–35

    Google Scholar 

  24. Kurihara HM, Myers J E (March 1960) The effect of superheat and surface roughness on boiling coefficients, A. I. Ch. E. Journal, vol 6 no 1 pp 83–91

    Google Scholar 

  25. Labuntsov DA (1974) State of the art of the nucleate boiling mechanism of liquids, Heat Transfer and Physical Hydrodynamics, Moskva, Nauka, in Russian, pp. 98–115

    Google Scholar 

  26. Levy S (1967) Forced convection subcooled boiling prediction of vapor volume fraction, Int. J. Heat Mass Transfer, vol 10 pp 951–965

    Article  Google Scholar 

  27. Moalem D, Yijl W, van Stralen SJD (1977) Nucleate boiling at a liquid-liquid interface, letters heat and mass transfer, vol 4 pp 319–329

    Google Scholar 

  28. Nishikawa K, Fujita Y, Uchida S, Ohta H (1984) Effect of surface configuration on nucleate boiling heat transfer, Int. J. Heat and Mass Transfer, vol 27 no 9 pp 1559–1571

    Article  Google Scholar 

  29. Rallis C J, Jawurek HH (1964) Latent heat transport in saturated nucleate boiling, Int. J. Heat Transfer, vol 7 pp 1051–1068

    Article  Google Scholar 

  30. Roll JB, Mayers JC (July 1964) The effect of surface tension on factors in boiling heat transfer, A.I.Ch.E.Journal, pp 330–344

    Google Scholar 

  31. Semeria RF (1962) Quelques resultats sur le mechanisme de l’ebullition, 7, J. de l’Hydraulique de la Soc. Hydrotechnique de France

    Google Scholar 

  32. Siegel R, Keshock EG (July 1964) Effects of reduced gravity on nucleate boiling bubble dynamics in saturated water, A.I.Ch.E. Journal, vol 10 no 4 pp 509–517

    Google Scholar 

  33. van Stralen SJD, Sluyter WM, Sohal MS (1975) Bubble growth rates in nucleate boiling of water at subatmospheric pressures, Int. J. Heat and Mass transfer, vol 18 pp 655–669

    Article  Google Scholar 

  34. van Stralen S, Cole R (1979) Boiling Phenomena, Hemisphere, USA

    Google Scholar 

  35. Sultan M, Judd RL (Feb. 1978) Spatial distribution of active sites and bubble flux density, Journal of Heat Transfer, Transactions of the ASME, vol 100 pp 56–62

    Google Scholar 

  36. Tolubinsky VI, Ostrovsky JN (1966) On the mechanism of boiling heat transfer (vapor bubbles growth rise in the process of boiling in liquids, solutions, and binary mixtures), Int. J. Heat Mass Transfer, vol 9 pp 1463–1470

    Article  Google Scholar 

  37. Vachon RI, Tanger GE, Davis DL, Nix GH (May 1968) Pool boiling on polished chemically etched stainless-steel surafces, Transactions of ASME, Journal of Heat Transfer, pp 231–238

    Google Scholar 

  38. Wang CH, Dhir VK (Aug. 1993) Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface, ASME Journal of Heat Transfer, vol 115 pp 659–669

    Google Scholar 

  39. Wiebe JR (1970) Temperature profiles in subcooled nucleate boiling, M. Eng. thes., Mechanical Engineering Department, McMaster University, Canada

    Google Scholar 

  40. Yamagata K, Hirano F, Nishikawa K, Matsuoka H (1955) Nucleate boiling of water on the horizontal heating surface, Mem. Fac. Engng, Kyushu Univ, vol 15 p 97

    Google Scholar 

  41. Yang JY, Weisman J (1991) A phenomenological model of subcooled flow boiling in the detached bubble region, Int. J. Multiphase Flow, vol 17 no 1 pp 77–94

    Article  Google Scholar 

  42. Zeng LZ, Klausner JF, Mei R (1993) A unified model for the prediction of bubble detachment diameters in boiling systems-1. Pool boiling, Int. J. of Heat and Mass Transfer, vol 36 no 9 pp 2261–2270

    Article  Google Scholar 

  43. Zeng L Z, Klausner JF, Bernard DM, Mei R (1993) A unified model for the prediction of bubble detachment diameters in boiling systems-2. Flow boiling, Int. J. of Heat and Mass Transfer, vol 36 no 9 pp 2271–2279

    Article  Google Scholar 

  44. Zuber N (1963) Nucleate boiling. The region of isolated bubbles and the similarity with natural convection, Int. J. Heat and Mass Transfer, vol 6 pp 53–78

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Bubble departure diameter. In: Multiphase Flow Dynamics 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26830-8_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-26830-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22107-4

  • Online ISBN: 978-3-540-26830-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics