Skip to main content

Liquid and gas jet disintegration

  • Chapter
Multiphase Flow Dynamics 2
  • 1251 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batchelor GK (ed) (1958) Collected works of Taylor GI, Cambridge Univ. Press, Cambridge, MA

    Google Scholar 

  2. Bohr N (1909) Determination of the surface-tension of water by method of jet vibration, Phil. Trans. Roy. Soc. London, Series A., vol 209 p 281

    Google Scholar 

  3. Bracco FV (Feb. 25–March 1, 1985) Modeling of engine sprays, Proc. International Congress & Exposition Detroit, Michigan, pp 113–136

    Google Scholar 

  4. Buerger M, von Berg E, Cho SH, Schatz A, (October 25–29, 1993) Modeling of jet breakup as a key process in premixing, Proc. of the Int. Seminar on The Physics of Vapor Explosions, Tomakomai, pp 79–89

    Google Scholar 

  5. Chawla TC (1975) The Kelvin-Helmholtz instability of gas-liquid interface, J. Fluid Mechanics, vol 67 no 3 pp 513–537

    Google Scholar 

  6. Chawla TC (1976) Drop size resulting from breakup of liquid-gas interfaces of liquid submerged subsonic and sonic gas jets, Int. J. Multiphase Flow, pp 471–475

    Google Scholar 

  7. Darton RC, La Nauze RD, Davidson JF and Harrison D (1977) Bubble growth due to coalescence in fluidized beds, Trans. I. Chem. E., vol 55 pp 274–280

    Google Scholar 

  8. Davidson JF and Harrison D (1963) Fluidized particles, Cambridge University Press, London

    Google Scholar 

  9. De Jarlais G, Ishii M and Linehan J (Febr. 1986) Hydrodynamic stability of inverted annular flow in an adiabatic simulation, Transactions of ASME, Journal of Heat Transfer, vol 108 pp 85–92

    Google Scholar 

  10. Epstein M and Fauske K (August 4–7, 1985) Steam film instability and the mixing of core-melt jets and water, ANS Proceedings, National Heat Transfer Conference, Denver, Colorado, pp 277–284

    Google Scholar 

  11. Faeth GM (April 3–7, 1995) Spray combustion: a review, Proc. of The 2nd International Conference on Multiphase Flow, Kyoto, Japan

    Google Scholar 

  12. Fenn III RW and Middleman S, Newtonian jet stability: The role of air resistance, AIChE Journal, vol 15 no 3 pp 379–383

    Google Scholar 

  13. Fritz W and Ende W (1966) Über den Verdampfungsvorgang nach kinematographischen Aufnahmen an Dampfblasen. Phys. Z., vol 37 pp 391–401

    Google Scholar 

  14. Geary NW and Rice RG (Feb. 1991) Bubble size prediction for rigid and flexible sparkers, AIChE Journal, vol 37 no 2 pp 161–168

    Article  Google Scholar 

  15. Grant RP and Middleman S (July 1966) Newton Jet Stability, AIChEJ, vol 12 no 4 p 669

    Article  Google Scholar 

  16. Rayleigh L (1878) On the instability of jets, Proc. London Math. Soc., vol 10 p 7

    Google Scholar 

  17. Iciek J (1982) The hydrodynamics of free, liquid jet and their influence on direct contact heat transfer-I, II, Int. J. Multiphase Flow, vol 8 no 3 pp 239–260

    Article  Google Scholar 

  18. Kutateladze SS and Styrikovich MA (1958) Hydraulics of gas-liquid systems, Moscow, Wright Field transl. F-TS-9814/V

    Google Scholar 

  19. Lienhard JH and Day JB (1970) The breakup of superheated liquid Jets, ASME J. Basic Eng., vol 92 pp 511–522

    Google Scholar 

  20. Mayer E (Dec. 1961) Theory of liquid atomization in high velocity gas streams, ARS Journal, vol 31 pp 1787–1785

    Google Scholar 

  21. Meister BJ and Scheele GF (1969) AIChEJ vol 15 pp 689–699

    Article  Google Scholar 

  22. Merrington AC and Richardson EG (1947) The breakup of liquids jets, Proc. Phys. Soc., vol 59 pp 1–13

    Article  Google Scholar 

  23. Nigmatulin BI, Melikhov OI, and Melikhov VI (Oct.25–29, 1993) Breakup of liquid jets in film boiling, Proc. of Int. Sem. on The Physics of Vapor Explosions, Tomakomi, pp 90–95

    Google Scholar 

  24. Ohnesorge W (1936) Die Bildung von Tröpfen an Düsen und die Auflüssiger Strahlen, Z. Angew. Math. Mech., vol 16 pp 335–359

    Google Scholar 

  25. Ruft K (1972) Bildung von Gasblasen an Düsen bei konstantem Volumendurchsatz, Chemie-Ing. Techn. vol 44 no 24 pp 1360–1366

    Article  Google Scholar 

  26. Saito M, Sato K and Imahori S (July 24–July 27, 1988) Experimental studi on penetration of water jet into Freon-11 and Liquid Nitrogen, ANS Proc. 1988 Nat. Heat Transfer Conference., HTS-Vol.3, Houston, Texas, pp 173–183

    Google Scholar 

  27. Schneider JP, Marchiniak MJ, Jones BG (Sept. 21–24, 1992) Breakup of metal jets penetrating a volatile liquid, Proc. of the Fifth Int. Top. Meeting On Reactor Thermal Hydraulics NURETH-5, vol 2 pp 437–449

    Google Scholar 

  28. Smith SWJ and Moss H (1917) Experiments with mercury jets, Proc. Roz. Soc., vol A/93 pp 373–393

    Google Scholar 

  29. Sun PH (November 4–6, 1998) Molten fuel-coolant interactions induced by coolant injection into molten fuel, SARJ98: The Workshop on Severe Accident Research held in Japan Tokio, Japan

    Google Scholar 

  30. Takahashi T and Kitamura Y (1971) Kogaku Kogaku, vol 35 p 637

    Google Scholar 

  31. Takahashi T and Kitamura Y (1972) Kogaku Kogaku, vol 36 p 912

    Google Scholar 

  32. Tanzawa Y and Toyoda S (1954) Trans. J.S.M.E. vol 20 p 306

    Google Scholar 

  33. Teng H, Kinoshita CM and Masutani SM (1995) Prediction of droplet size from the breackup of cylindrical liquid jet, Int. J. Multiphase Flows, vol 21 no 1 pp 129–136

    Article  Google Scholar 

  34. Thimotika H (1935) Proc. Roy. Soc., vol.150 p 322: (1936) vol 153 p 302

    Google Scholar 

  35. Weber C (1936) Zum Zerfall eines Flüssigketsstrahles, Z. Angew. Math. Mech., vol 11 pp 136–154

    Google Scholar 

  36. Wolfe HE and Anderson WH (1965) Aerodynamic breakup of liquid drops, II. Experimental, Proc. Int. Shock Tube Symposium, Naval Ordinance Lab. White Oak, Maryland, USA

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Liquid and gas jet disintegration. In: Multiphase Flow Dynamics 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26830-8_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-26830-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22107-4

  • Online ISBN: 978-3-540-26830-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics