Skip to main content

Detonation waves caused by chemical reactions or by melt-coolant interactions

  • Chapter
Multiphase Flow Dynamics 1
  • 1310 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berthoud G (March 1999) Heat transfer modeling during a thermal detonation, CEA/Grenoble Report no SMTH/LM2/99-37

    Google Scholar 

  2. Board SJ, Hall RW, Hall RS (1975) Detonation of fuel coolant explosions, Nature 254, March 27, pp 319–321

    Google Scholar 

  3. Chapman DL (1899) Philos. Mag., vol 47 no 5 p 90

    Google Scholar 

  4. Crussard L (1907) Bull. De la Soc. De l’industrie Minérale St.-Etienne, vol 6 pp 1–109

    Google Scholar 

  5. Fischer M (1967) Zur Dynamik der Wellenausbreitung in den Zweiphasenströmungen unter Berücksichtigung von Verdichtungsstössen, Dissertation, TH Karlsruhe

    Google Scholar 

  6. Frost DL, Lee JHS, Ciccarelli (1991) The use of Hugoniot analysis for the propagation of vapor explosion waves, Shock Waves, Springer, Berlin Heidelberg New York, pp 99–110

    Google Scholar 

  7. Henry RE, Fauske HK (August 1981) Core melt progression and the attainment of a permanently coolable state, in Proc. of the ANS Topical Meeting on Reactor Safety Aspects of Fuel Behavior, San Valley, Idaho. American Nuclear Society

    Google Scholar 

  8. Henry RE, Fauske HK (1981) Required initial conditions for energetic steam explosions, J. Heat Transfer, vol 19 pp 99–107

    Google Scholar 

  9. Hugoniot PH (1887) Mémoire sur la propagation du mouvement dans les corps et spécialement dans les gazes parfaits, Journal de l’École Polytechnique

    Google Scholar 

  10. Huhtiniemi I, Magalon D, Hohmann H (1997) Results of recent KROTOS FCI tests: alumna vs. corium melts, OECD/CSNI Specialist Meeting on Fuel Coolant Interactions, JAERI-Tokai Research Establishment, Japan 19–21 May

    Google Scholar 

  11. Jouguet E (1905) J. Mathématique, p 347; (1906) p 6; (1917) Mécanique des Explosifs, Doin O, Paris

    Google Scholar 

  12. Kolev NI (1999) In-vessel melt-water interaction caused by core support plate failure under molten pool, Part 1: Choice of the solution method, Proceedings of the ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, 3–8 October, 1999, Log. No. 316_1

    Google Scholar 

  13. Kolev NI (1999) In-vessel melt-water interaction caused by core support plate failure under molten pool, Part 2: Analysis, Proceedings of the ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, 3–8 October, 1999, Log. No. 316_2

    Google Scholar 

  14. Kolev N I (1999) Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence — alumna experiments, Proc. of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, 3–8 October

    Google Scholar 

  15. Kolev NI (2000) Detonation waves in melt-coolant interaction, Part 1: Theory, EU Nr. INV-MFCI(99)-D038, Kerntechnik, vol 65 no 5–6 pp 254–260

    Google Scholar 

  16. Kolev NI and Hulin H (2001) Detonation waves in melt-coolant interaction, Part.2: Aplied analysis, MFCI Project, 6th progress meeting, CEA, Grenoble, 23–24 June 1999. EU Nr. INV-MFCI(99)-D038. Kerntechnik, vol 66 no 1–2 pp 21–25

    Google Scholar 

  17. Landau L, Lifshitz EM (1953) Hydrodynamics, Nauka i izkustwo, Sofia 1978 (in Bulgarian), translated from Russian: Theoretical physics: Continuum mechanics and hydrodynamics, Technikoistorizeskoy literatury, Moscu

    Google Scholar 

  18. Laplace PSM (1816) Sur la vitesse du son dans l’air at dan l’eau, Annales de Chimie et de Physique

    Google Scholar 

  19. Park GC, Corradini ML (July 1991) Estimates of limits for fuel-coolant mixing, in AIChE Proc. of the National Heat Transfer Conference, Minneapolis

    Google Scholar 

  20. Rankine WJM (1870) On the thermodynamic theory of waves of finite longitudinal disturbances, Philosophical Transactions of the Royal Society

    Google Scholar 

  21. Rayleigh L (Sept. 15 1910) Aerial plane waves of finite amplitude, Proc. of the Royal Society

    Google Scholar 

  22. Robert JK, Rupley and Miller JA (April 1987) The CHEMKIN thermodynamic data base, SAND-87-8215, DE87 009358

    Google Scholar 

  23. Scott EF, Berthoud GJ (Dec. 10–15 1978) Multi-phase thermal detonation, Topics in two-phase heat transfer and flow, pp 11–16, ASME Winter annual meeting, San Francisco

    Google Scholar 

  24. Shamoun BI, Corradini ML (1995) Analysis of supercritical vapor explosions using thermal detonation wave theory, Proceedings of the seventh International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-7) pp 1634–1652

    Google Scholar 

  25. Shamoun BI, Corradini ML (July 1996) Analytical study of subcritical vapor explosions using thermal detonation wave theory, Nuclear Technology, vol 115, pp 35–45

    Google Scholar 

  26. Taylor G I (Oct. 1910) The condition necessary for discontinuous motion in gases, Proc. of the Royal Society

    Google Scholar 

  27. Wallis GB (1969) One-dimensional two-phase flow, McGraw-Hill, New York

    Google Scholar 

  28. Wood B (1930) Textbook of sound, Macmillan, New York, p 327

    Google Scholar 

  29. Yuen WW, Theofanous TG (19th–21st May 1997) On the existence of multi-phase thermal detonation, Proceedings of OECD/CSNI Specialists Meeting on Fuel-Coolant Interactions (FCI), JAERI-Tokai Research Establishment, Japan

    Google Scholar 

  30. Zeldovich JB (1940) To the theory of detonation propagation in gas systems, Journal of experimental and theoretical physics, vol 10 no 5 pp 542–568

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Detonation waves caused by chemical reactions or by melt-coolant interactions. In: Multiphase Flow Dynamics 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26829-4_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-26829-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22106-7

  • Online ISBN: 978-3-540-26829-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics