Skip to main content

Momentums conservation

  • Chapter
Multiphase Flow Dynamics 1
  • 1330 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson TB, Jackson R (1967) A fluid mechanical description of fluidized beds, Ind. Eng. Fundam., vol 6 pp 527

    Google Scholar 

  2. Bamea D, Taitel Y (1994) Interfacial and structural stability, Int. J. Multiphase Flow, vol 20Suppl pp 387–414

    Article  Google Scholar 

  3. Bataille J, Lance M, Marie JL (1990) Bubble turbulent shear flows, ASME Winter Annular Meeting, Dallas, Nov. 1990

    Google Scholar 

  4. Bememann K, Steiff A, Weinspach PM (1991) Zum Einfluss von längsangeströmten Rohrbündeln auf die großräumige Flüssigkeitsströmung in Blasensäulen, Chem. Ing. Tech., vol 63 no 1 pp 76–77

    Article  Google Scholar 

  5. Biesheuvel A, van Wijngaarden L (1984) Two-phase flow equations for a dilute dispersion of gas bubbles in liquid, J. Fluid Mechanics, 168 pp 301–318

    Google Scholar 

  6. Biesheuvel A, Spollstra S (1989) The added mass coefficient of dispersion of gas bubbles in liquid, Int. J. Multiphase Flow, no. 15 pp 911–924

    Article  Google Scholar 

  7. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension, Journal of Computational Physics, vol 100 pp 335–354

    Article  Google Scholar 

  8. Brauner N, Maron DM (1992) Stability analysis of stratified liquid-liquid flow, Int. J. Multiphase Flow, vol 18 no 1 pp 103–121

    Article  Google Scholar 

  9. Cook TL, Harlow FH (1983) VORT: A computer code for bubble two-phase flow. Los Alamos National Laboratory documents LA-10021-MS

    Google Scholar 

  10. Cook TL, Harlow FH (1984) Virtual mass in multi-phase flow, Int. J. Multiphase Flow, vol. 10 no 6 pp 691–696

    Article  Google Scholar 

  11. de Crecy F (1986) Modeling of stratified two-phase flow in pipes, pumps and other devices, Int. J. Multiphase Flow, vol 12 no 3 pp 307–323

    Article  Google Scholar 

  12. Deich ME, Philipoff GA (1981) Gas dynamics of two phase flows, Energoisdat, Moskva

    Google Scholar 

  13. Delhaye JM (1981) Basic equations for two-phase flow, in Bergles AE et al (eds) Two-phase flow and heat transfer in power and process industries, Hemisphere Publishing Corporation, McGraw-Hill Book Company, New York

    Google Scholar 

  14. Delhaye JM, Giot M, Riethmuller ML (1981) Thermohydraulics of two-phase systems for industrial design and nuclear engineering, Hemisphere Publishing Corporation, New York, McGraw Hill Book Company, New York

    Google Scholar 

  15. Drazin PG, Reid WH (1981) Hydrodynamic Stability, Cambridge Univ. Press, Cambridge, UK

    Google Scholar 

  16. Drew DA, Lahey RT Jr (1987) The virtual mass and lift force on a sphere in rotating and straining flow, Int. J. Multiphase Flow, vol. 13 no 1, pp 113–121

    Article  Google Scholar 

  17. Erichhom R, Small S (1969) Experiments on the lift and drag of spheres suspended in a poiseuille flow, J. Fluid Mech., vol 20–3 pp 513

    Google Scholar 

  18. Gray WG, Lee PCY (1977) On the theorems for local volume averaging of multi-phase system, Int. J. Multi-Phase Flow, vol 3 pp 222–340

    Google Scholar 

  19. Hetstrony G (1982) Handbook of multi-phase systems. Hemisphere Publ. Corp., Washington et al., McGraw-Hill Book Company, New York et al.

    Google Scholar 

  20. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for dynamics of free boundaries, J. of Comp. Physics, vol 39 p 201–225

    Article  Google Scholar 

  21. Ho BP, Leal LG (1976) Intemal migration of rigid spheres in two-dimensional unidirectional flows, J. Fluid Mech., vol 78 no 2 p 385

    Google Scholar 

  22. Hwang GJ, Schen HH (Sept. 21–24, 1992) Tensorial solid phase pressure from hydrodynamic interaction in fluid-solid flows. Proc. of the Fifth International Topical Meeting On Reactor Thermal Hydraulics, NURETH-5, Salt Lake City, UT, USA, IV pp 966–971

    Google Scholar 

  23. Ishii M (1975) Thermo-fluid dynamic theory of two-phase flow, Eyrolles, Paris

    Google Scholar 

  24. Ishii M, Michima K (1984) Two-fluid model and hydrodynamic constitutive relations, NSE 82 pp 107–126

    Google Scholar 

  25. Kolev NI (March 1985) Transiente Dreiphasen-Dreikomponenten Strömung, Teil 1: Formulierung des Differentialgleichungssystems, KfK 3910

    Google Scholar 

  26. Kolev NI (1986) Transiente Dreiphasen-Dreikomponenten Strömung, Teil 3: 3D-Dreifluid-Diffusionsmodell, KfK 4080

    Google Scholar 

  27. Kolev NI (1986) Transient three-dimensional three-phase three-component non equilibrium flow in porous bodies described by three-velocity fields, Kernenergie vol 29 no 10 pp 383–392

    Google Scholar 

  28. Kolev NI (Aug. 1987), A three field-diffusion model of three-phase, three-component Flow for the transient 3D-computer code IVA2/001. Nuclear Technology, vol 78 pp 95–131

    Google Scholar 

  29. Kolev NI (1991) IVA3: A transient 3D three-phase, three-component flow analyzer, Proc. of the Int. Top. Meeting on Safety of Thermal Reactors, Portland, Oregon, July 21–25, 1991, pp 171–180. The same paper was presented to the 7th Meeting of the IAHR Working Group on Advanced Nuclear Reactor Thermal — Hydraulics, Kemforschungszentrum Karlsruhe, August 27 to 29, 1991

    Google Scholar 

  30. Kolev NI, Tomiyama A, Sakaguchi T (Sept. 1991) Modeling of the mechanical interaction between the velocity fields in three-phase flow, Experimental Thermal and Fluid Science, vol 4 no 5 pp 525–545

    Article  Google Scholar 

  31. Kolev NI (Sept. 1991) A three-field model of transient 3D multi-phase, three-component flow for the computer code IVA3, Part 1: Theoretical basics: conservation and state equations, Numerics. KfK 4948, Kernforschungszentrum Karlsruhe

    Google Scholar 

  32. Kolev NI (1993) The code IVA3 for modeling of transient three-phase flows in complicated 3D geometry, Kerntechnik, vol 58 no 3 pp 147–156

    Google Scholar 

  33. Kolev NI (1993) IVA3 NW: Computer code for modeling of transient three-phase flow in complicated 3D geometry connected with industrial networks, Proc. of the Sixth Int. Top. Meeting on Nuclear Reactor Thermal Hydraulics, Oct. 5–8, 1993, Grenoble, France

    Google Scholar 

  34. Kolev NI (1993) Berechnung der Fluiddynamischen Vorgänge bei einem Sperrwasser-Kühlerrohrbruch, Projekt KKW Emsland, Siemens KWU Report R232/93/0002

    Google Scholar 

  35. Kolev NI (1993) IVA3-NW A three phase flow network analyzer. Input description, Siemens KWU Report R232/93/E0041

    Google Scholar 

  36. Kolev NI (1993) IVA3-NW components: relief valves, pumps, heat structures, Siemens KWU Report R232/93/E0050

    Google Scholar 

  37. Kolev NI (1994) IVA4: Modeling of mass conservation in multi-phase multi-component flows in heterogeneous porous media. Kerntechnik, vol 59 no 4–5 pp 226–237

    Google Scholar 

  38. Kolev NI (1994) The code IVA4: Modelling of momentum conservation in multi-phase multi-component flows in heterogeneous porous media, Kerntechnik, vol 59 no 6 pp 249–258

    Google Scholar 

  39. Kolev NI (1995) The code IVA4: Second law of thermodynamics for multi phase flows in heterogeneous porous media, Kerntechnik, vol 60 no 1, pp 1–39

    Google Scholar 

  40. Kolev NI (1994) The influence of the mutual bubble interaction on the bubble departure diameter, Experimental Thermal and Fluid Science, vol 8 pp 167–174

    Article  Google Scholar 

  41. Kolev NI (1996) Three Fluid Modeling With Dynamic Fragmentation and Coalescence Fiction or Daily practice? 7th FARO Experts Group Meeting Ispra, October 15–16, 1996; Proceedings of OECD/CSNI Workshop on Transient thermal-hydraulic and neutronic codes requirements, Annapolis, MD, U.S.A., 5th–8th November 1996; 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, ExHFT 4, Brussels, June 2–6, 1997; ASME Fluids Engineering Conference & Exhibition, The Hyatt Regency Vancouver, Vancouver, British Columbia, CANADA June 22–26, 1997, Invited Paper; Proceedings of 1997 International Seminar on Vapor Explosions and Explosive Eruptions (AMIGO-IMI), May 22–24, Aoba Kinen Kaikan of Tohoku University, Sendai-City, Japan.

    Google Scholar 

  42. Kolev NI (1997) Comments on the entropy concept, Kerntechnik, vol 62 no 1 pp 67–70

    Google Scholar 

  43. Kolev N I (1999) Verification of IVA5 computer code for melt-water interaction analysis, Part 1: Single phase flow, Part 2: Two-phase flow, three-phase flow with cold and hot solid spheres, Part 3: Three-phase flow with dynamic fragmentation and coalescence, Part 4: Three-phase flow with dynamic fragmentation and coalescence alumna experiments, CD Proceedings of the Ninth International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, California, October 3–8, 1999, Log. Nr. 315

    Google Scholar 

  44. Lahey RT Jr (Jan. 1991) Void wave propagation phenomena in two-phase flow, AIChE Journal, vol 31 no 1 pp 123–135

    Article  Google Scholar 

  45. Lahey RT Jr (1990) The analysis of phase separation and phase distribution phenomena using two-fluid models, NED 122 pp 17–40

    Article  Google Scholar 

  46. Lamb MA (1945) Hydrodynamics, Cambridge University Press, Cambridge

    Google Scholar 

  47. Lamb H (1945) Hydrodynamics, Dover, New York

    Google Scholar 

  48. Mamaev WA, Odicharia G S, Semeonov N I, Tociging A A (1969) Gidrodinamika gasogidkostnych smesey w trubach, Moskva

    Google Scholar 

  49. Milne-Thomson LM (1968) Theoretical Hydrodynamics, MacMillan & Co. Ltd., London

    Google Scholar 

  50. Mokeyev GY (1977) Effect of particle concentration on their drag induced mass, Fluid. Mech. Sov. Res., vol 6 p 161

    Google Scholar 

  51. Nigmatulin RT (1979) Spatial averaging in the mechanics of heterogeneous and dispersed systems, Int. J. of Multiphase Flow, vol. 5 pp. 353–389

    Article  Google Scholar 

  52. No HC, Kazimi MS (1985) Effects of virtual mass of the mathematical characteristics and numerical stability of the two-fluid model, NSE 89 pp. 197–206

    Google Scholar 

  53. Prandtl L (1952) Essentials of Fluid Dynamics, Blackie & Son, Glasgow pp. 342

    Google Scholar 

  54. Ransom VH et al. (March 1987) RELAP5/MOD2 Code manual, vol 1: Code structure, system models, and solution methods, NUREG/CR-4312, EGG-2396, rev 1

    Google Scholar 

  55. Ruggles AE et al (1988) An investigation of the propagation of pressure perturbation in bubbly air/water flows, Trans. ASME J. Heat Transfer, vol 110 pp 494–499

    Google Scholar 

  56. Schlichting H (1959) Boundary layer theory, Mc Graw-Hill, New York

    Google Scholar 

  57. Sha T, Chao BT, Soo SL (1984) Porous-media formulation for multi-phase flow with heat transfer, Nuclear Engineering and Design, vol 82 pp 93–106

    Article  Google Scholar 

  58. Slattery JC (1967) Flow of visco-elastic fluids through porous media, AIChE Journal, vol 13 pp 1066

    Article  Google Scholar 

  59. Slattery JC (1990) Interfacial transport phenomena, Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  60. Slattery JC (1999) Advanced transport phenomena, Cambridge University Press

    Google Scholar 

  61. Soo SL, Tung, S K (1972) J. Powder Techn., vol 6 p 283

    Article  Google Scholar 

  62. Staffman PG (1965) The lift on a small sphere in a slow shear flow, J. Fluid Mech., vol 22, Part 2 pp 385–400

    Google Scholar 

  63. Stuhmiller JH (1977) The influence of the interfacial pressure forces on the character of the two-phase flow model, Proc. of the 1977 ASME Symp. on Computational Techniques for Non-Equilibrium Two-Phase Phenomena, pp 118–124

    Google Scholar 

  64. Thomas GB, Jr., Finney RL, Weir MD (1998) Calculus and analytic geometry, 9th Edition, Addison-Wesley Publishing Company, Reading, MA

    Google Scholar 

  65. Trent DS, Eyler LL (1983) Application of the TEMPTEST computer code for simulating hydrogen distribution in model containment structures, PNL-SA-10781, DE 83 002725

    Google Scholar 

  66. Truesdell C (1968) Essays in the history of mechanics, Springer-Verlag, New York

    Google Scholar 

  67. van Wijngaarden L (1976) Hydrodynamic interaction between gas bubbles in liquid, J. Fluid Mech., vol 77 pp 27–44

    Google Scholar 

  68. Vasseur P, Cox RG (1976) The lateral migration of spherical particles in two-dimensional shear flows, J. Fluid Mech., vol 78 Part 2 pp 385–413

    Google Scholar 

  69. Whitaker S (1967) Diffusion and dispersion in porous media, AIChE Journal, vol 13 pp 420

    Article  Google Scholar 

  70. Whitaker S (1969) Advances in theory of fluid motion in porous media, Ind. Engrg. Chem., vol 61 no 12 pp 14–28

    Article  Google Scholar 

  71. Whitaker S (1985) A Simple geometrical derivation of the spatial averaging theorem, Chemical Engineering Education, pp 18–21, pp 50–52

    Google Scholar 

  72. Winatabe T, Hirano M, Tanabe F, Kamo H (1990) The effect of the virtual mass force term on the numerical stability and efficiency of the system calculations, Nuclear Engineering and design, vol 120 pp 181–192

    Article  Google Scholar 

  73. Wallis GB (1969) One-dimensional two-phase flow, McGraw-Hill, New York

    Google Scholar 

  74. Zuber N (1964) On the dispersed two-phase flow in the laminar flow regime, Chem. Eng. Science, vol 49 pp 897–917

    Article  Google Scholar 

  75. Zwick SA (1906) J. Math. Phys., vol 4 p 289

    Google Scholar 

  76. Kolev NI (1977) Two-phase two-component flow (air-water steam-water) among the safety compartments of the nuclear power plants with water cooled nuclear reactors during lose of coolant accidents, PhD Thesis, Technical University Dresden

    Google Scholar 

  77. Biberg D (December 1999) An explicit approximation for the wetted angle in two-phase stratified pipe flow, The Canadian Journal of Chemical Engineering, vol 77 pp 1221–1224

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Momentums conservation. In: Multiphase Flow Dynamics 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26829-4_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-26829-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22106-7

  • Online ISBN: 978-3-540-26829-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics