Skip to main content

Targeted Optical Imaging and Photodynamic Therapy

  • Conference paper
Book cover Molecular Imaging

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 49))

12.7 Conclusion

This review of photodiagnosis and phototherapy is a summary of specific aspects of optical targeting. It is not meant to be a comprehensive review, rather it is expected to serve both as an introduction of the approach for an audience outside the field of optical technologies. As such it is somewhat subjective and it is important for the reader to be aware that this is a very brief summary of literature and concepts in a rapidly emerging field. With the advent of new molecular probes and light delivery and light capturing techniques, it is likely that the field of optical treatment and diagnosis will have developed to such an extent in the next 5 years so as to make this writing irrelevant!

Many of the PS described throughout this chapter are potentially useful for both diagnosis and therapy. The fluorescence produced by these compounds may be exploited for several purposes: the identification and delineation of malignant tissues, the quantification of PS at the tumor site, and potentially the monitoring of oxygen and PS consumption during therapeutic light exposure. In an optimal scenario, targeted delivery identifies diseased tissue and in the same procedure treatment is delivered. A targeting molecule (MAb or peptide based) would deliver an optically activable agent specifically to tumors. This OAA would be used for diagnosis and treatment. The progressive improvement of remote imaging devices and molecular targeting strategies make this an attractive aim of preclinical and clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achilefu S, Srinivasan A, Schmidt MA, Jimenez HN, Bugaj JE, Erion JL (2003) Novel bioactive and stable neurotensin peptide analogues capable of delivering radiopharmaceuticals and molecular beacons to tumors. J MedChem 46:3403–3411

    CAS  Google Scholar 

  • Akhlynina TV, Rosenkranz AA, Jans DA, Sobolev AS (1995) Insulin-mediated intracellular targeting enhances the photodynamic activity of chlorin e6. Cancer Res 55:1014–1019

    PubMed  CAS  Google Scholar 

  • Allison BA, Pritchard PH, Levy JG (1994) Evidence for low-density lipoprotein receptor-mediated uptake of benzoporphyrin derivative. Br J Cancer 69:833–839

    PubMed  CAS  Google Scholar 

  • Barel A, Jori G, Perin A, Romandini P, Pagnan A, Biffanti S (1986) Role of high-, low-and very low-density lipoproteins in the transport and tumor-delivery of hematoporphyrin in vivo. Cancer Lett 32:145–150

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner R, Huber RM, Schulz H, Stepp H, Rick K, Gamarra F, Leberig A, Roth C (1996) Inhalation of 5-aminolevulinic acid: a new technique for fluorescence detection of early stage lung cancer. J Photochem Photo-biol B 36:169–174

    Article  CAS  Google Scholar 

  • Bigio IJ, Mourant JR, Los G (1999) Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy. J Gravit Physiol 6:P173–175

    PubMed  CAS  Google Scholar 

  • Braichotte DR, Savary JF, Monnier P, van den Bergh HE (1996) Optimizing light dosimetry in photodynamic therapy of early stage carcinomas of the esophagus using fluorescence spectroscopy. Lasers Surg Med 19:340–346

    Article  PubMed  CAS  Google Scholar 

  • Bugaj JE, Achilefu S, Dorshow RB, Rajagopalan R (2001) Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform. J Biomed Opt 6:122–133

    Article  PubMed  CAS  Google Scholar 

  • Cahalan MD, Parker I, Wei SH, Miller MJ (2002) Two-photon tissue imaging: seeing the immune system in a fresh light. Nat Rev Immunol 2:872–880

    Article  PubMed  CAS  Google Scholar 

  • Casas A, Batlle A (2002) Rational design of 5-aminolevulinic acid derivatives aimed at improving photodynamic therapy. Curr Med Chem Anti-Canc Agents 2:465–475

    Article  CAS  Google Scholar 

  • Cavanaugh PG (2002) Synthesis of chlorin e6-transferrin and demonstration of its light-dependent in vitro breast cancer cell killing ability. Breast Cancer Res Treat 72:117–130

    Article  PubMed  CAS  Google Scholar 

  • Cernay T, Zimmermann HW (1996) Selective photosensitization of mitochondria by the lipophilic cationic porphyrin POR10. J Photochem Photobiol B 34:191–196

    Article  PubMed  CAS  Google Scholar 

  • Chowdhary RK, Shariff I, Dolphin D (2003) Drug release characteristics of lipid based benzoporphyrin derivative. J Pharm Sci 6:13–19

    CAS  Google Scholar 

  • Cincotta L, Foley JW, MacEachern T, Lampros E, Cincotta AH (1994) Novel photodynamic effects of a benzophenothiazine on two different murine sarcomas. Cancer Res 54:1249–1258

    PubMed  CAS  Google Scholar 

  • Cincotta L, Szeto D, Lampros E, Hasan T, Cincotta AH (1996) Benzophenothiazine and benzoporphyrin derivative combination phototherapy effectively eradicates large murine sarcomas. Photochem Photobiol 63:229–237

    Article  PubMed  CAS  Google Scholar 

  • Dummin H, Cernay T, Zimmermann HW (1997) Selective photosensitization of mitochondria in HeLa cells by cationic Zn (II) phthalocyanines with lipophilic side-chains. J Photochem Photobiol B 37:219–229

    Article  PubMed  CAS  Google Scholar 

  • Fingar VH, Taber SW, Haydon PS, Harrison LT, Kempf SJ, Wieman TJ (2000) Vascular damage after photodynamic therapy of solid tumors: a view and comparison of effect in pre-clinical and clinical models at the University of Louisville. In Vivo 14:93–100

    PubMed  CAS  Google Scholar 

  • Freitas I (1990) Lipid accumulation: the common feature to photosensitizer-retaining normal and malignant tissues. J Photochem Photobiol B 7:359–361

    Article  PubMed  CAS  Google Scholar 

  • Friesen SA, Hjortland GO, Madsen SJ, Hirschberg H, Engebraten O, Nesland JM, Peng Q (2002) 5-Aminolevulinic acid-based photodynamic detection and therapy of brain tumors (review). Int J Oncol 21:577–582

    PubMed  CAS  Google Scholar 

  • Frisoli JK, Tudor EG, Flotte TJ, Hasan T, Deutsch TF, Schomacker KT (1993) Pharmacokinetics of a fluorescent drug using laser-induced fluorescence. Cancer Res 53:5954–5961

    PubMed  CAS  Google Scholar 

  • Fritsch C, Lang K, Neuse W, Ruzicka T, Lehmann P (1998) Photodynamic diagnosis and therapy in dermatology. Skin Pharmacol Appl Skin Physiol 11:358–373

    Article  PubMed  CAS  Google Scholar 

  • Fulljames C, Stone N, Bennett D, Barr H (1999) Beyond white light endoscopy — the prospect for endoscopic optical biopsy. Ital J Gastroenterol Hepatol 31:695–704

    PubMed  CAS  Google Scholar 

  • Gijsens A, Missiaen L, Merlevede W, de Witte P (2000) Epidermal growth factor-mediated targeting of chlorin e6 selectively potentiates its photodynamic activity. Cancer Res 60:2197–2202

    PubMed  CAS  Google Scholar 

  • Granville DJ, Cassidy BA, Ruehlmann DO, Choy JC, Brenner C, Kroemer G, van Breemen C, Margaron P, Hunt DW, McManus BM (2001) Mitochondrial release of apoptosis-inducing factor and cytochrome c during smooth muscle cell apoptosis. Am J Pathol 159:305–311

    PubMed  CAS  Google Scholar 

  • Guimond M, Balassy A, Barrette M, Brochu S, Perreault C, Roy DC (2002) P-glycoprotein targeting: a unique strategy to selectively eliminate immunoreactive T cells. Blood 100:375–382

    Article  PubMed  CAS  Google Scholar 

  • Gupta S (1995) P-glycoprotein expression and regulation. Age-related changes and potential effects on drug therapy. Drugs Aging 7:19–29

    Article  PubMed  CAS  Google Scholar 

  • Hadjantonakis AK, Nagy A (2001) The color of mice: in the light of GFP-variant reporters. Histochem Cell Biol 115:49–58

    PubMed  CAS  Google Scholar 

  • Hamblin MR, Tawakol A, Castano PA, Gad F, Zahra T, Ahmad A, Stern J, Ortel B, Chirico S, Shirazi A, Syed S, Muller JE (2003) Macrophage-targeted photodynamic detection of vulnerable atherosclerotic plaque. Proc SPIE (in press)

    Google Scholar 

  • Hasan T, Lin CW, Lin A (1989) Laser-induced selective cytotoxicity using monoclonal antibody-chromophore conjugates. Prog Clin Biol Res 288: 471–477

    PubMed  CAS  Google Scholar 

  • Hasan T, Ortel B, Moor A, Pogue B (2003) Photodynamic therapy of cancer. In: Kufe DW, Pollack RE, Weichselbaum RR, et al. (eds) Cancer Medicine, 6th edn. B.C. Decker Hamilton, Ontario, pp 605–622

    Google Scholar 

  • Hawrysz DJ, Sevick-Muraca EM (2000) Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents. Neoplasia 2:388–417

    Article  PubMed  CAS  Google Scholar 

  • Hunt DW, Chan AH (2000) Influence of photodynamic therapy on immunological aspects of disease — an update. Expert Opin Investig Drugs 9: 807–817

    Article  PubMed  CAS  Google Scholar 

  • Iinuma S, Schomacker KT, Wagnieres G, Rajadhyaksha M, Bamberg M, Momma T, Hasan T (1999) In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model. Cancer Res 59:6164–6170

    PubMed  CAS  Google Scholar 

  • Jiang FN, Jiang S, Liu D, Richter A, Levy JG (1990) Development of technology for linking photosensitizers to a model monoclonal antibody. J Immunol Methods 134:139–149

    Article  PubMed  CAS  Google Scholar 

  • Kennedy JC, Marcus SL, Pottier RH (1996) Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): mechanisms and clinical results. J Clin Laser Med Surg 14:289–304

    PubMed  CAS  Google Scholar 

  • Kessel D (1992) The role of low-density lipoprotein in the biodistribution of photosensitizing agents. J Photochem Photobiol B 14:261–262

    Article  PubMed  CAS  Google Scholar 

  • Kessel D, Luo Y (1998) Mitochondrial photodamage and PDT-induced apoptosis. J Photochem Photobiol B 42:89–95

    Article  PubMed  CAS  Google Scholar 

  • Kessel D, Luo Y (1999) Photodynamic therapy: a mitochondrial inducer of apoptosis. Cell Death Differ 6:28–35

    Article  PubMed  CAS  Google Scholar 

  • Kessel D, Woodburn K, Gomer CJ, Jagerovic N, Smith KM (1995 a) Photosensitization with derivatives of chlorin p6. J Photochem Photobiol B 28:13–18

    Article  PubMed  CAS  Google Scholar 

  • Kessel D, Woodburn K, Henderson BW, Chang CK (1995 b) Sites of photodamage in vivo and in vitro by a cationic porphyrin. Photochem Photobiol 62:875–881

    PubMed  CAS  Google Scholar 

  • Konan YN, Gurny R, Allemann E (2002) State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B 66:89–106

    Article  PubMed  CAS  Google Scholar 

  • Lee CC, Pogue BW, Burke GC, Hoopes PJ (2003) Spatial heterogeneity and temporal kinetics of photosensitizer (AlPcS2) concentration in murine tumors RIF-1 and MTG-B. Photochem Photobiol Sci 2:145–150

    Article  PubMed  CAS  Google Scholar 

  • Lee CC, Pogue BW, Strawbridge RR, Moodie KL, Bartholomew LR, Burke GC, Hoopes PJ (2001) Comparison of photosensitizer (AIPcS2) quantification techniques: in situ fluorescence microsampling versus tissue chemical extraction. Photochem Photobiol 74:453–460

    Article  PubMed  CAS  Google Scholar 

  • Leunig A, Betz CS, Mehlmann M, Stepp H, Arbogast S, Grevers G, Baum-gartner R (2000) Detection of squamous cell carcinoma of the oral cavity by imaging 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. Laryngoscope 110:78–83

    Article  PubMed  CAS  Google Scholar 

  • Liang C, Sung KB, Richards-Kortum RR, Descour MR (2002) Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope. Appl Opt 41:4603–4610

    Article  PubMed  Google Scholar 

  • Marcus SL, Sobel RS, Golub AL, Carroll RL, Lundahl S, Shulman DG (1996) Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): current clinical and development status. J Clin Laser Med Surg 14:59–66

    PubMed  CAS  Google Scholar 

  • Marijnissen JP, Star WM, in’t Zandt HJ, D’Hallewin MA, Baert L (1993) In situ light dosimetry during whole bladder wall photodynamic therapy: clinical results and experimental verification. Phys Med Biol 38:567–582

    Article  PubMed  CAS  Google Scholar 

  • Marti A, Jichlinski P, Lange N, Ballini JP, Guillou L, Leisinger HJ, Kucera P (2003) Comparison of aminolevulinic acid and hexylester aminolevulinate induced protoporphyrin IX distribution in human bladder cancer. J Urol 170:428–432

    Article  PubMed  CAS  Google Scholar 

  • Mathupala SP, Rempel A, Pedersen PL (1997) Aberrant glycolytic metabolism of cancer cells: a remarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical role for type II hexokinase. J Bioenerg Biomembr 29:339–343

    Article  PubMed  CAS  Google Scholar 

  • Messmann H (2000) 5-Aminolevulinic acid-induced protoporphyrin IX for the detection of gastrointestinal dysplasia. Gastrointest Endosc Clin N Am 10:497–512

    PubMed  CAS  Google Scholar 

  • Moan J, Berg K (1991) The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53:549–553

    Article  PubMed  CAS  Google Scholar 

  • Murray JM (1992) Neuropathology in depth: the role of confocal microscopy. J Neuropath Exp Neurol 51:475–487

    Article  PubMed  CAS  Google Scholar 

  • Nelson JS, Liaw LH, Orenstein A, Roberts WG, Berns MW (1988) Mechanism of tumor destruction following photodynamic therapy with hematoporphyrin derivative, chlorin, and phthalocyanine. J Natl Cancer Inst 80:1599–1605

    Article  PubMed  CAS  Google Scholar 

  • Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208

    PubMed  Google Scholar 

  • Ntziachristos V, Tung CH, Bremer C, Weissleder R (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8:757–760

    Article  PubMed  CAS  Google Scholar 

  • Oenbrink G, Jurgenlimke P, Gabel D (1988) Accumulation of porphyrins in cells: influence of hydrophobicity aggregation and protein binding. Photochem Photobiol 48:451–456

    Article  PubMed  CAS  Google Scholar 

  • Patterson MS, Wilson BC, Graff R (1990a) In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminum chlorosulphonated phthalocyanine. Photochem Photobiol 51:343–349

    Article  PubMed  CAS  Google Scholar 

  • Patterson MS, Wilson BC, Wyman DR (1990b) The propagation of optical radiation in tissue I. Models of radiation transport and their application. Lasers Med Sci 6:155–168

    Article  Google Scholar 

  • Patterson MS, Wilson BC, Wyman DR (1990c) The propagation of optical radiation in tissue II. Optical properties of tissues and resulting fluence distributions. Lasers Med Sci 6:379–390

    Article  Google Scholar 

  • Pogue BW, Hasan T (2003) Targeting in photodynamic therapy and photo-imaging. OPN 14:36–43

    Google Scholar 

  • Pogue BW, Burke GC (1998) Fiber optic bundle design for quantitative fluorescence measurement from tissue. Appl Opt 37:7429–7436

    Article  PubMed  CAS  Google Scholar 

  • Pogue BW, Poplack SP, McBride TO, Wells WA, Osterman KS, Osterberg UL, Paulsen KD (2001) Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast. Radiology 218:261–266

    PubMed  CAS  Google Scholar 

  • Polo L, Valduga G, Jori G, Reddi E (2002) Low-density lipoprotein receptors in the uptake of tumour photosensitizers by human and rat transformed fibroblasts. Int J Biochem Cell Biol 34:10–23

    Article  PubMed  CAS  Google Scholar 

  • Rahimipour S, Ben-Aroya N, Ziv K, Chen A, Fridkin M, Koch Y (2003) Receptor-mediated targeting of a photosensitizer by its conjugation to gonadotropin-releasing hormone analogues. J Med Chem 46:3965–3974

    Article  PubMed  CAS  Google Scholar 

  • Richter AM, Waterfield E, Jain AK, Canaan AJ, Allison BA, Levy JG (1993) Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem Photobiol 57:1000–1006

    Article  PubMed  CAS  Google Scholar 

  • Riedl CR, Daniltchenko D, Koenig F, Simak R, Loening SA, Pflueger H (2001) Fluorescence endoscopy with 5-aminolevulinic acid reduces early recurrence rate in superficial bladder cancer. J Urol 165:1121–1123

    Article  PubMed  CAS  Google Scholar 

  • Riedl CR, Plas E, Pfluger H (1999) Fluorescence detection of bladder tumors with 5-amino-levulinic acid. J Endourol 13:755–759

    Article  PubMed  CAS  Google Scholar 

  • Sakaeda T, Nakamura T, Okumura K (2003) Pharmacogenetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs. Pharmacogenomics 4:397–410

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Erfurth U, Hasan T, Gragoudas E, Michaud N, Flotte TJ, Birngruber R (1994) Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology 101:1953–1961

    PubMed  CAS  Google Scholar 

  • Shin DM, Gimenez IB, Lee JS, Nishioka K, Wargovich MJ, Thacher S, Lotan R, Slaga TJ, Hong WK (1990) Expression of epidermal growth factor receptor, polyamine levels, ornithine decarboxylase activity, micronuclei, and transglutaminase I in a 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis model. Cancer Res 50:2505–2510

    PubMed  CAS  Google Scholar 

  • Sitnik TM, Hampton JA, Henderson BW (1998) Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate. Br J Cancer 77:1386–1394

    PubMed  CAS  Google Scholar 

  • Sitnik TM, Henderson BW (1998) The effect of fluence rate on tumor and normal tissue responses to photodynamic therapy. Photochem Photobiol 67:462–466

    Article  PubMed  CAS  Google Scholar 

  • Soukos NS, Hamblin MR, Keel S, Fabian RL, Deutsch TF, Hasan T (2001) Epidermal growth factor receptor-targeted immunophotodiagnosis and photoimmunotherapy of oral precancer in vivo. Cancer Res 61:4490–4496

    PubMed  CAS  Google Scholar 

  • Stolz B, Weckbecker G, Smith-Jones PM, Albert R, Raulf F, Bruns C (1998) The somatostatin receptor-targeted radiotherapeutic [90Y-DOTA-DPhel, Tyr3]octreotide (90Y-SMT 487) eradicates experimental rat pancreatic CA 20948 tumours. Eur J Nucl Med 25:668–674

    Article  PubMed  CAS  Google Scholar 

  • Taroni P, Pifferi A, Torricelli A, Comelli D, Cubeddu R (2003) In vivo absorption and scattering spectroscopy of biological tissues. Photochem Photobiol Sci 2:124–129

    Article  PubMed  CAS  Google Scholar 

  • Utzinger U, Richards-Kortum RR (2003) Fiber optic probes for biomedical optical spectroscopy. J Biomed Optics 8:121–147

    Article  Google Scholar 

  • Vrouenraets MB, Visser GW, Loup C, Meunier B, Stigter M, Oppelaar H, Stewart FA, Snow GB, van Dongen GA (2000) Targeting of a hydrophilic photosensitizer by use of internalizing monoclonal antibodies: A new possibility for use in photodynamic therapy. Int J Cancer 88:108–114

    Article  PubMed  CAS  Google Scholar 

  • Vrouenraets MB, Visser GW, Stigter M, Oppelaar H, Snow GB, van Dongen GA (2001) Targeting of aluminum (III) phthalocyanine tetrasulfonate by use of internalizing monoclonal antibodies: improved efficacy in photo-dynamic therapy. Cancer Res 61:1970–1975

    PubMed  CAS  Google Scholar 

  • Vulcan TG, Zhu TC, Rodriguez CE, Hsi A, Fraker DL, Baas P, Murrer LH, Star WM, Glatstein E, Yodh AG, Hahn SM (2000) Comparison between isotropic and nonisotropic dosimetry systems during intraperitoneal photo-dynamic therapy. Lasers Surg Med 26:292–301

    Article  PubMed  CAS  Google Scholar 

  • Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68:603–632

    PubMed  CAS  Google Scholar 

  • Wilson BC, Patterson MS, Lilge L (1997) Implicit and explicit dosimetry in photodynamic therapy: a new paradigm. Lasers Med Sci 12:182–199

    Article  Google Scholar 

  • Wood SR, Holroyd JA, Brown SB (1997) The subcellular localization of Zn(II) phthalocyanines and their redistribution on exposure to light. Photochem Photobiol 65:397–402

    Article  PubMed  CAS  Google Scholar 

  • Yarmush ML, Thorpe WP, Strong L, Rakestraw SL, Toner M, Tompkins RG (1993) Antibody targeted photolysis. Crit Rev Ther Drug Carrier Syst 10:197–252

    PubMed  CAS  Google Scholar 

  • Zhang M, Zhang Z, Blessington D, Li H, Busch TM, Madrak V, Miles J, Chance B, Glickson JD, Zheng G (2003) Pyropheophorbide 2-deoxyglucosamide: a new photosensitizer targeting glucose transporters. Bioconjug Chem 14:709–714

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Solban, N., Ortel, B., Pogue, B., Hasan, T. (2005). Targeted Optical Imaging and Photodynamic Therapy. In: Bogdanov, A.A., Licha, K. (eds) Molecular Imaging. Ernst Schering Research Foundation Workshop, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26809-X_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-26809-X_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21021-4

  • Online ISBN: 978-3-540-26809-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics