Advertisement

Nonstationary Sibling Wavelet Frames on Bounded Intervals: the Duality Relation

  • Laura Beutel
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Summary

This note presents the setting of sibling frames on a compact interval together with a discussion on the duality relation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. L. Butzer and R. J. Nessel. Fourier Analysis and Approximation. Birkhäuser, Basel und Stuttgart, 1971.Google Scholar
  2. 2.
    C. K. Chui, W. He, and J. Stöckler. Compactly supported tight and sibling frames with maximum vanishing moments. Applied Comput. Harmonic Anal. 13:224–262, 2002.CrossRefGoogle Scholar
  3. 3.
    C. K. Chui, W. He, and J. Stöckler. Nonstationary tight wavelet frames on bounded intervals, submitted. Preprint available as: Universität Dortmund, Ergebnisberichte Angewandte Mathematik Nr. 230, April 2003.Google Scholar
  4. 4.
    C. K. Chui and J. Stöckler. Recent development of spline wavelet frames with compact support. To appear in Beyond wavelets, G. V. Welland (ed.). Academic Press, San Diego et al., 2003.Google Scholar
  5. 5.
    I. Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, Pa., 1992.Google Scholar
  6. 6.
    I. Daubechies, B. Han, A. Ron, and Z. Shen. Framelets: MRA-based constructions of wavelet frames. Applied Comput. Harmonic Anal. 14:1–46, 2003.MathSciNetCrossRefGoogle Scholar
  7. 7.
    R. A. DeVore and G. G. Lorentz. Constructive Approximation. Springer, Berlin, 1993.Google Scholar
  8. 8.
    T. Lyche, K. Mørken, and E. Quak. Theory and algorithms for nonuniform spline wavelets. In “ Multivariate Approximation and Applications”, N. Dyn, D. Leviatan, D. Levin and A. Pinkus (eds.), Cambridge University Press, pages 152–187, 2001.Google Scholar
  9. 9.
    Y. Meyer. Ondelettes et Opérateurs: II. Opérateurs de Calderón Zygmund. Hermann et Cie, Paris, 1990.Google Scholar
  10. 10.
    R. M. Young. An Introduction to Nonharmonic Fourier Series. Academic Press, San Diego, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Laura Beutel
    • 1
    • 2
  1. 1.Institute of Applied MathematicsUniversity of DortmundGermany
  2. 2.SINTEF Applied MathematicsOsloNorway

Personalised recommendations