Periodic and Spline Multiresolution Analysis and the Lifting Scheme

  • Jürgen Prestin
  • Ewald Quak
Part of the Mathematics and Visualization book series (MATHVISUAL)


The lifting scheme is a well-known general framework for the construction of wavelets, especially in finitedimensional settings. After a short introduction about the basics of lifting, we discuss how wavelet constructions, in two specific finite settings, can be related to the lifting approach. These examples concern, on the one hand, polynomial splines and, on the other, the Fourier approach for translation-invariant spaces of periodic functions.


Space Versus Discrete Fourier Transform Lift Scheme Biorthogonal Wavelet Polynomial Spline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carnicer, J.M., Dahmen, W., Pena, J.M.: Local decomposition of refinable spaces and wavelets. Appl. Comput. Harmon. Anal., 3, 127–153 (1996).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chui, C.K., Mhaskar, H.N.: On trigonometric wavelets. Constr. Approx., 9, 167–190 (1993).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math., 45, 485–560 (1992).MathSciNetGoogle Scholar
  4. 4.
    Dahmen, W., Kunoth, A., Urban, K.: Biorthogonal spline wavelets on the interval — stability and moment conditions. Appl. Comput. Harmon. Anal., 6, 132–196 (1999).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dahmen, W., Micchelli, C.A.: Banded matrices with banded inverses. II: Locally finite decomposition of spline spaces. Constr. Approx., 9, 263–281 (1993).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dahmen, W., Schneider, R.: Wavelets on manifolds. I: Construction and domain decomposition. SIAM J. Math. Anal., 31, 184–230 (1999).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. J. Fourier Anal. Appl., 4, 247–269 (1998).MathSciNetGoogle Scholar
  8. 8.
    Koh, Y.W., Lee, S.L., Tan, H.H. Periodic orthogonal splines and wavelets. Appl. Comput. Harmonic Anal., 2, 201–218 (1995).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lyche, T., Mørken, K., Quak, E.: Theory and algorithms for nonuniform spline wavelets. In: Dyn, N., Leviatan, D., Levin, D., and Pinkus, A., (eds.), Multivariate approximation and applications, Cambridge University Press, 152–187 (2001).Google Scholar
  10. 10.
    Masson, R.: Biorthogonal spline wavelets on the interval for the resolution of boundary problems. Math. Models Methods Appl. Sci., 6, 749–791 (1996).zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Narcowich, F.J., Ward, J.D.: Wavelets associated with periodic basis functions. Appl. Comput. Harmon. Anal., 3, 40–56 (1996).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Plonka, G., Tasche, M.: A unified approach to periodic wavelets. In: Chui, C.K., Montefusco, L., and Puccio, L. (eds.), Wavelets: Theory, Algorithms, and Applications, Academic Press, New York, 137–151 (1994).Google Scholar
  13. 13.
    Plonka, G., Tasche, M.: On the computation of periodic spline wavelets. Appl. Comput. Harmon. Anal., 2, 1–14 (1995).MathSciNetCrossRefGoogle Scholar
  14. 14.
    Prestin, J., Quak, E.: Trigonometric interpolation and wavelet decompositions. Num. Alg., 9, 293–317 (1995).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Quak, E.: Nonuniform B-splines and B-wavelets. In: Iske, A., Quak, E., Floater M. S., (eds.), Tutorials on Multiresolution in Geometric Modelling, Springer, 101–146 (2002).Google Scholar
  16. 16.
    Schneider, R.: Multiskalenund Wavelet-Matrixkompression. Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme. Advances in Numerical Mathematics. B. G. Teubner Stuttgart (1998).Google Scholar
  17. 17.
    Selig, K.: Periodische Wavelet-Packets und eine gradoptimale Schauderbasis. PhD thesis, Universität Rostock, Germany, Shaker Verlag, Aachen (1998).Google Scholar
  18. 18.
    Sweldens, W., Schröder, P.: Building your own wavelets at home. Wavelets in Computer Graphics, ACM SIGGRAPH Course Notes (1996).Google Scholar
  19. 19.
    Sweldens, W.: The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal., 3, 186–200 (1996).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jürgen Prestin
    • 1
  • Ewald Quak
    • 2
  1. 1.Institute of MathematicsUniversity of LübeckGermany
  2. 2.Department of Applied MathematicsSINTEF ICTOsloNorway

Personalised recommendations