Topology Preserving Thinning of Vector Fields on Triangular Meshes

  • Holger Theisel
  • Christian Rössl
  • Hans-Peter Seidel
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


We consider the topology of piecewise linear vector fields whose domain is a piecewise linear 2-manifold, i.e. a triangular mesh. Such vector fields can describe simulated 2-dimensional flows, or they may reflect geometric properties of the underlying mesh. We introduce a thinning technique which preserves the complete topology of the vector field, i.e. the critical points and separatrices. As the theoretical foundation, we have shown in an earlier paper that for local modifications of a vector field, it is possible to decide entirely by a local analysis whether or not the global topology is preserved. This result is applied in a number of compression algorithms which are based on a repeated local modification of the vector field — namely a repeated edge-collapse of the underlying piecewise linear domain.


Compression Ratio Skin Friction Triangular Mesh Compression Algorithm Stream Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Bajaj and D. Schikore. Topology-preserving data simplification with error bounds. Comput. & Graphics, 22(1):3–12, 1998.CrossRefGoogle Scholar
  2. 2.
    C. L. Bajaj, V. Pascucci, and D. R. Schikore. Visualization of scalar topology for structural enhancement. In Proc. IEEE Visualization '98, pages 51–58, 1998.Google Scholar
  3. 3.
    W. de Leeuw and R. van Liere. Collapsing flow topology using area metrics. In Proc. IEEE Visualization '99, 1999.Google Scholar
  4. 4.
    W. de Leeuw and R. van Liere. Visualization of global flow structures using multiple levels of topology. In Data Visualization 1999. Proc. VisSym 99, pages 45–52, 1999.Google Scholar
  5. 5.
    T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev. Topology preserving edge contraction. Publ. Inst. Math (Beograd), 66(1999):23–45, 1999.MathSciNetGoogle Scholar
  6. 6.
    H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse complexes for piecewise linear 2-manifolds. In Proc. 17th Sympos. Comput. Geom. 2001, 2001.Google Scholar
  7. 7.
    P. A. Firby and C. F. Gardiner. Surface Topology, chapter 7, pages 115–135. Ellis Horwood Ltd., 1982. Vector Fields on Surfaces.Google Scholar
  8. 8.
    H. Garcke, T. Preusser, M. Rumpf, A. Telea, U. Weikardt, and J. van Wijk. A continuous clustering method for vector fields. In T. Ertl, B. Hamann, and A. Varshney, editors, Proc. IEEE Visualization 2000, pages 351–358, 2000.Google Scholar
  9. 9.
    A. Globus and C. Levit. A tool for visualizing of three-dimensional vector fields. In Proc. IEEE Visualization '91, pages 33–40. IEEE Computer Society Press, 1991.Google Scholar
  10. 10.
    B. Heckel, G.H. Weber, B. Hamann, and K.I. Joy. Construction of vector field hierarchies. In D. Ebert, M. Gross, and B. Hamann, editors, Proc. IEEE Visualization '99, pages 19–26, Los Alamitos, 1999.Google Scholar
  11. 11.
    J. Helman and L. Hesselink. Representation and display of vector field topology in fluid flow data sets. IEEE Computer, 22(8):27–36, August 1989.Google Scholar
  12. 12.
    D. N. Kenwright, C. Henze, and C. Levit. Feature extraction of separation and attachment lines. IEEE Transactions on Visualization and Computer Graphics, 5(2):135–144, 1999.CrossRefGoogle Scholar
  13. 13.
    S. K. Lodha, J. C. Renteria, and K. M. Roskin. Topology preserving compression of 2D vector fields. In Proc. IEEE Visualization 2000, pages 343–350, 2000.Google Scholar
  14. 14.
    G. Scheuermann, H. Krüger, M. Menzel, and A. Rockwood. Visualizing nonlinear vector field topology. IEEE Transactions on Visualization and Computer Grapics, 4(2):109–116, 1998.CrossRefGoogle Scholar
  15. 15.
    H. Theisel. Designing 2D vector fields of arbitrary topology. Computer Graphics Forum (Eurographics 2002), 21(3):595–604, 2002.CrossRefGoogle Scholar
  16. 16.
    H. Theisel, C. Rössl, and H.-P. Seidel. Compression of 2D vector fields under guaranteed topology preservation. Computer Graphics Forum (Eurographics 2003), 22(3):333–342, 2003.CrossRefGoogle Scholar
  17. 17.
    X. Tricoche, G. Scheuermann, and H. Hagen. A topology simplification method for 2D vector fields. In Proc. IEEE Visualization 2000, pages 359–366, 2000.Google Scholar
  18. 18.
    X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplification of planar vector fields. In Proc. Visualization 01, pages 159–166, 2001.Google Scholar
  19. 19.
    I. Trotts, D. Kenwright, and R. Haimes. Critical points at infinity: a missing link in vector field topology. In Proc. NSF/DoE Lake Tahoe Workshop on Hierarchical Approximation and Geometrical Methods for Scientific Visualization, 2000.Google Scholar
  20. 20.
    R. Westermann, C. Johnson, and T. Ertl. Topology-preserving smoothing of vector fields. IEEE Transactions on Visualization and Computer Graphics, 7(3):222–229, 2001.CrossRefGoogle Scholar
  21. 21.
    T. Wischgoll and G. Scheuermann. Detection and visualization of closed streamlines in planar flows. IEEE Transactions on Visualization and Computer Graphics, 7(2):165–172, 2001.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Holger Theisel
    • 1
  • Christian Rössl
    • 1
  • Hans-Peter Seidel
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations