\(\sqrt 5 \)-subdivision

  • Ioannis P. Ivrissimtzis
  • Neil A. Dodgson
  • Malcolm Sabin
Part of the Mathematics and Visualization book series (MATHVISUAL)


Most established subdivision schemes have the refined grid at each stage aligned with the previous one. The \(\sqrt 3 \) and \(\sqrt 2 \) schemes alternate orientations. This paper is one of the first detailed studies of a skew scheme in which the axis directions after refinement do not either lie along or bisect those before. It raises the issue of how the analysis techniques can be applied in this new context and provides an example of how they may be thus applied.


Tangent Plane Subdivision Scheme Quadrilateral Mesh Subdivision Surface Circulant Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Alexa. Split operators for triangular refinement. Computer Aided Geometric Design, 19(3):169–172, 2002.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    F. Bachmann and E. Schmidt. n-Ecke. B.I.-Hochschultaschenbücher, 1970.Google Scholar
  3. 3.
    A. A. Ball and D. J. T. Storry. Conditions for tangent plane continuity over recursively generated B-spline surfaces. ACM Transactions on Graphics, 7(2):83–102, 1988.CrossRefGoogle Scholar
  4. 4.
    L. Barthe, C. Gérot, M. A. Sabin, and L. Kobbelt. Simple computation of the eigencomponents of a subdivision matrix in the Fourier domain. In N. A. Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in Multiresolution for Geometric Modelling, pages 245–257 (this book). Springer, 2004.Google Scholar
  5. 5.
    E. R. Berlekamp, E. N. Gilbert, and F. W. Sinden. A polygon problem. Am. Math. Mon., 72:233–241, 1965.MathSciNetCrossRefGoogle Scholar
  6. 6.
    E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design, 10:350–355, 1978.CrossRefGoogle Scholar
  7. 7.
    P. J. Davis. Circulant matrices. Chichester: Wiley, New York, 1979.Google Scholar
  8. 8.
    D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design, 10:356–360, 1978.CrossRefGoogle Scholar
  9. 9.
    N. Dyn. Subdivision schemes in computer-aided geometric design. In W. Light, editor, Advances in Numerical Analysis, volume 2, pages 36–104. Clarendon Press, 1992.Google Scholar
  10. 10.
    N. Dyn, D. Levin, and J. Simoens. Face value subdivision schemes on triangulations by repeated averaging. In A. Cohen, J.-L. Merrien, and L. L. Schumaker, editors, Curve and Surface Fitting: Saint-Malo 2002, pages 129–138. Nashboro Press, 2003.Google Scholar
  11. 11.
    M. S. Floater. Mean value coordinates. Computer Aided Geometric Design, 20(1):19–28, 2003.zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    I. P. Ivrissimtzis, N. A. Dodgson, and M. A. Sabin. A generative classification of mesh refinement rules with lattice transformations. Computer Aided Geometric Design, 21(1):99–109, 2004.MathSciNetCrossRefGoogle Scholar
  13. 13.
    I. P. Ivrissimtzis, M. A. Sabin, and N. A. Dodgson. On the support of recursive subdivision. ACM Transactions on Graphics. To appear.Google Scholar
  14. 14.
    I. P. Ivrissimtzis and H.-P. Seidel. Evolutions of polygons in the study of subdivision surfaces. Computing. To appear.Google Scholar
  15. 15.
    I. P. Ivrissimtzis, K. Shrivastava, and H.-P. Seidel. Subdivision rules for general meshes. In A. Cohen, J.-L. Merrien, and L. L. Schumaker, editors, Curve and Surface Fitting: Saint-Malo 2002, pages 229–238. Nashboro Press, 2003.Google Scholar
  16. 16.
    I. P. Ivrissimtzis, R. Zayer, and H.-P. Seidel. Polygonal decomposition of the 1-ring neighborhood of the Catmull-Clark scheme. In Proc. Shape Modeling International, 2004. To appear.Google Scholar
  17. 17.
    L. Kobbelt. \(\sqrt 3 \) subdivision. In Proc. ACM SIGGRAPH 2000, pages 103–112, 2000.Google Scholar
  18. 18.
    C. T. Loop. Smooth subdivision surfaces based on triangles. Master's thesis, University of Utah, Department of Mathematics, 1987.Google Scholar
  19. 19.
    P. Oswald and P. Schröder. Composite primal/dual sqrt(3)-subdivision schemes. Computer Aided Geometric Design, 20(3):135–164, 2003.MathSciNetCrossRefGoogle Scholar
  20. 20.
    U. Reif. A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design, 12(2):153–174, 1995.zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. A. Sabin. Eigenanalysis and artifacts of subdivision curves and surfaces. In A. Iske, E. Quak, and M. S. Floater, editors, Tutorials on Multiresolution in Geometric Modelling, pages 69–92. Springer, 2002.Google Scholar
  22. 22.
    I. H. Sloan and S. Joe. Lattice methods for multiple integration. Oxford Science Publications. Oxford: Clarendon Press., 1994.Google Scholar
  23. 23.
    M. Stamminger and G. Drettakis. Interactive sampling and rendering for complex and procedural geometry. In Proc. Eurographics Workshop on Rendering, pages 151–162, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ioannis P. Ivrissimtzis
    • 1
  • Neil A. Dodgson
    • 2
  • Malcolm Sabin
    • 3
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Computer LaboratoryUniversity of CambridgeUK
  3. 3.Numerical Geometry Ltd.CambridgeUK

Personalised recommendations